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ABSTRACT 
 
Deep learning based quantitative assessment of digital pathology images and understanding the underlying reasons for               
a specific clinical decision is challenging, and automatic histology pattern classification and tumor localization in               
whole-slide pathology images are critical for interpretable learning systems. In this study, we propose an end-to-end                
deep learning framework for automatic detection and localization of tumors directly from non-stained whole slide               
prostate core biopsy images (WSI). We use a previously described Generative Adversarial Network (GAN)-based              
model from our laboratory for computational Hematoxylin and Eosin (H&E) staining of native non-stained pathology               
images. A convolutional neural network to detect and classify tumor regions in 1024×1024 virtually stained H&E                
pixel patches, and a concurrent deep weakly supervised (WSL) model that provides localization of predominant               
histologic patterns used for tumor classification without the need for pixel-level annotations are reported in this study                 
for the first time. The end-to-end system was evaluated on a 17K hold out set of 1024×1024 non-stained patches                   
extracted from 13 whole slide prostate biopsy images. Experimental results yielded 86.37% patch-level classification              
accuracy with 85.05% precision, and achieved a Dice index of 65.07±1.99 (compared to 70.24±1.86 Dice index in the                  
U-Net reference model for pixel-level segmentation). The end-to-end deep learning framework thus automates digital              
pathology image workflow from tissue staining to interpretable prostate tumor classification and can be valuable for                
accurate grading of prostate cancer and generalized to other whole-slide image classification tasks. 

 
Keywords: ​Pathology image analysis, prostate cancer, automated classification, tumor localization, deep learning 

 
 

1. INTRODUCTION 
Microscopic examination of histopathology slides is the criterion standard in diagnosing most types of cancers               
including those in prostate​1​. Automated histopathology image analysis can provide a cost effective, fast, and               
supportive method to complement expert pathologist opinion for diagnosis and prognosis of cancer predictions​2​. The               
widespread adaptation of WSI for digital pathology workflows has created opportunities for developing             
computer-aided deep learning algorithms for image analysis and diagnosis​3​. Pathologists use dye-based H&E staining              
to visualize the tissue structures to evaluate and identify important features for cancer​4​. However, limited tissue                
availability due to low sampling of tissue volumes​5,6​, and irreversible H&E dye staining of tissues staining​7 are major                  
challenges in dye-based histopathology image analysis. Deep learning-based approaches for computational virtual            
H&E staining of images of non-stained core biopsy samples can help address some limitations of traditional H&E dye                  
staining by providing rapid and automated readouts and early assessments of tissue samples. We have previously                
reported generative deep learning algorithms and models (GAN-CS) that convert native non-stained whole slide              
images of prostate core biopsy to their computationally H&E dye-stained versions with high precision​8,9​. Detailed               
computer vision and physician ratification for detection and Gleason scoring of prostate tumors showed that the                
computational H&E-stained images were able to provide accurate diagnosis matching dye-stained images​9​. 
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In this work, an end-to-end deep learning system that can perform virtual H&E staining, classification, and                
localization of tumors from native and unlabeled non-stained prostate core biopsy images is described for the first                 
time. We report optimization of patch-level classification of WSIs including patch size and ratio of no-tumor and                 
tumor data distribution. We develop deep learning models for classification of H&E dye-stained images (Classifier I)                
and computational H&E-stained images (Classifier II) and a deep weakly localization algorithm for localization of               
tumors on WSI. The localization maps compared to the pixel-level segmentation results for validation of the                
end-to-end system described in this study. 
 
 

2. BACKGROUND AND RELATED WORKS 
Clinical interpretation of pathology images remains the criterion standard for diagnosing several diseases including              
most types of cancer​10,11,12​. However, widespread adoption of WSI for tumor detection and cancer diagnosis by                
pathologists has increased the demand for effective and efficient gigapixel image analysis tools and methods.               
Recently, a plethora of reports advocating for integration of deep learning algorithms for automated tumor detection                
from H&E dye stained WSI have been published​13​. For example, Xu et al.​14​, proposed using deep convolutional                 
neural network activation features applied to classification, segmentation, and visualization in large-scale tissue             
histopathology images. They used a pre-trained AlexNet​15 architecture to visualize deep features to show that their                
network was able to learn complex clinical characteristics. The input images were H&E-stained patch-level images               
extracted from whole slide images. With a growing number of machine learning-based image analysis tools and                
software, that utilize dye-stained tissue images to perform, e.g., automated diagnosis, image segmentation, or              
classification for diagnosis and treatment evaluation but there are still technical barriers that prevent the translation of                 
these advances into clinical applications. One of the main challenges is the lack of model generalization due to                  
variability in H&E slide preparation and digital scanning process​16​. Heterogeneity of H&E images can affect               
automatic image analysis algorithms. However, standardization approaches like staining normalization based on color             
deconvolution and deep learning​17 and color augmentation techniques​18 have shown improvements in the             
generalization of the classification tasks for several tissue types. Recent works have tackled the staining variability                
problem by performing digital (i.e., virtual) staining of the non-stained histology images to match the images of                 
histologically stained samples. Ozcan et al.​19 trained a deep neural network via a generative adversarial approach to                 
stain an autofluorescence image of an unstained tissue section, thus bypassing the need for histological staining and                 
bright-field microscopy. Recent work from our laboratory showed that a deep-learning model can computationally              
generate histological stains (H&E) from non-stained images of prostate core biopsy, and that these computational               
stains were clinically indistinguishable from the corresponding histologically stained tissue​9 images. In this study, we               
augment previously described automated virtual H&E staining models with classification, detection and localization             
of prostate tumors without the need for pixel-level annotations of WSI as an end-to-end deep learning system. 

 
3. DATASET AND PREPROCESSING 

3.1 Study population and data 

Partners Human Research Committee approved study protocol (2014P002435) for utilization of excess material from              
prostate core biopsies performed during routine clinical care between 2014 and 2017, at Brigham and Women’s                
Hospital, Boston, Massachusetts. Informed consent was waived because data were deidentified and samples were              
obtained as part of routine clinical care. Deidentified WSIs were transferred to the Massachusetts Institute of                
Technology for processing and analysis, and was exempt from institutional review board review per the Committee                
on the Use of Humans as Experimental Subjects guidelines. A dataset with WSIs of 46 histopathological slide image                  
pairs at 20X magnification was obtained from 38 patients (mean age 66.2 years and a standard deviation of 8.92) with                    
demographic diversity. Since each WSI contained 1-6 core biopsy tissue cores, single prostate tissue needle core                
biopsy images were extracted that resulted in 112 high-resolution native non-stained and H&E dye-stained image               
registered pairs. All WSI were examined by four board-certified/trained expert pathologists as previously described              
by us​8​. Sedeen Viewer software was used for detailed clinical labels indicating tumor regions with Gleason grades                 
and other atypical manifestations on the H&E dye-stained images were provided. For training deep learning models                
on WSIs, patches instead of the whole slide images were used as input. Clinical evaluation showed that patches of                   
1024×1024 pixel size provided enough tissue for contextual representation to detect tumors. Patches with more than                
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85% white background were discarded. This process resulted in 95,605 patches that were further split into training,                 
validation, and test sets (Table 1). 

Table 1. Data splits of computationally H&E-stained prostate core biopsy images for training deep learning models in this 
study 

 

 
3.2 Annotations 

All WSI were manually labeled by a board-certified/trained expert pathologist. Detailed labels in the form of                
free-form outlines encompassing tumors regions with Gleason grades and other atypical manifestations on the H&E               
dye-stained images were provided using the Sedeen Viewer (PathCore Inc., Toronto, Ontario, Canada) on notebook               
computer screens (Dell Computers, Round Rock, TX). Annotations were classified - Gleason grade 3 (G3), Gleason                
grade 4 (G4), Gleason grade 5 (G5) as described previously​9​. 

3.3 Optimum patch size 

It is computationally impractical to perform classification and segmentation with deep learning-based algorithms             
using the extremely large size of a single histopathology image (~100,000​✕ ​100,000 pixels). And downscaling the                 
entire histopathology image to an acceptable size can reduce detailed information for accurate tumor detection and                
segmentation tasks. To overcome this problem, most histopathology classification and segmentation studies adopt a              
patch sampling technique​20​. The contribution of minimum sufficient patch size to cover the essential tissue structures                
in histopathological images on classification and segmentation performance of neural network models is not well               
understood. In one study​14​, authors reported 336 ×336 pixels for 20X magnification and 672 ×672 pixels for 40X                  
magnification scale yielded the highest accuracy in binary and multiclass tissue histopathology image classification              
tasks​21,22​. In this study, we systematically evaluated classification performance by optimization of different patch              
sizes with 50% overlapping rate and distributions of no-tumor and tumorous patches (Figure 1). Patches or regions of                  
larger sizes provided higher classification (tumor/no-tumor) accuracy for neural networks (Table 2). A board-certified              
pathologist independently evaluated the patches with different sizes and reported that sizes of 1024×1024 provide               
enough tissue for contextual representation to detect a tumor. Based on these results, each histopathology image was                 
divided into a set of overlapping square patches with a size of 1024 ×1024 pixels at 20X magnification. These                   
patches formed a rectangular grid with 512-pixel stride, i.e., distance between adjacent patches. To further reduce the                 
number of patches and misclassification, patches with more than 85% white background were discarded. 

 

    
200​✕​200 400​✕​400 600​✕​600 800​✕​800 1200​✕​1200 

Figure 1. A sample set of patches with various pixel sizes used for optimization of deep learning models 
 
 
 

 

Class label Train Val Test Total 
No-tumor 47,435 6,107 3,813 57,355 
Tumor 31,329 4,175 2,746 38,250 
Total 78,764 10,282 6,559 95,605 
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Table 2​. Classification accuracy of different H&E dye-stained prostate core biopsy patch sizes with and without tumors 

 

 
3.4 Distribution of tumor and no-tumor patches 

Another factor that affects the classification performance of deep neural networks is the distribution of image patches                 
with and without tumors in training and validation data. We used random undersampling of patches in different ratios                  
to evaluate the classification accuracy where the ratio of patches without tumors to those with tumors varies between                  
0.98 to 2. Figure 2 shows the box plot of classification accuracy in multiple experiments 1-6 using different random                   
undersampling of 200×200 pixels patches without tumors. The ratio of 1.4 (no-tumor: tumor) achieves higher               
classification performance with low variation. And increasing or decreasing this ratio negatively impacts the accuracy               
of the classification. Based on these experiments, each image was cropped with 50% overlapping regions into                
multiple patches of size 1024× 1024 pixels resulting in 95,605 registered pair patches. A sampled patch from a WSI                   
was assigned a tumor label if at least ten percent of patch size contains cancerous tissue, otherwise it was assigned a                     
no-tumor label. The 95,605 generated patches were further split into training, validation, and test sets reported in                 
Table 1 showing the ratio of no-tumor (57,355) to tumor patches (38,250) was ~1.4. The test set consisted of 13                    
single-core WSI, that contain one or more of five Gleason grade tumors. 

  
Figure 2. Box plot of classification accuracy in multiple experiments from different random undersampling of H&E dye                 
stained prostate core biopsy image patches of 200×200 pixels. The values specified for each experiment in parenthesis                 
represent the ratio of patches without-tumors to those with tumor. Each dot shows the value of accuracy in each iteration                    
through the full training dataset​. 

 
 
 

4. CLASSIFICATION OF IMAGE PATCHES AND TUMOR LOCALIZATION 
4.1 Prostate tumor classification network 

Deep convolutional neural networks have been progressively applied to computer vision applications like medical              
image analysis due to their significant performance advantages provided by high-performance computing and the              

 

Patch size  Patches without 
tumors 

 Patches with 
tumors Accuracy (%) 

200×200 151,067 74,005 84.14 
400×400 48,284 24,722 86.53 
600×600 26,198 13,548 86.75 
800×800 15,124 8,398 87.65 

1024×1024 9,833 5,650 88.21 
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availability of large datasets​23​. We used a deep residual network (ResNet), a type of convolutional neural network                 
with residual blocks that has shown promising results on both natural image​24 and medical image classification and                 
segmentation tasks​25​. ResNet was implemented in a supervised manner to take in WSI patches of sizes 1024×1024 as                  
input and output a prediction probability for tumor with any histological patterns or no-tumor tissue. ResNet                
architecture was also initialized on a large dataset of natural images such as ImageNet​26​. This fine-tuning process uses                  
the generic image features from natural images that are fundamental for all images and optimizes them for the variety                   
of medical imaging modalities​27​. Figure 3 shows a boxplot diagram to compare the performance of the pre-trained                 
and fine-tuned ResNet on ImageNet data and the same architecture trained using only WSI images. The distribution                 
of accuracies obtained from the ImageNet pre-trained models have higher minimum and maximum accuracy              
compared to the models trained on WSI. They also have fewer outliers in their distributions across the full course of                    
training. In summary, pre-trained models using ImageNet dataset outperformed the models trained on only              
histopathology images. 
 
4.2 Input data preprocessing and model parameters 

To offset color differences between WSI slides, all color channel values were normalized to the mean and standard                  
deviation of the entire training set before using WSI patches for training classifiers. We also augmented the training                  
set by performing color jittering on the brightness, contrast, saturation, and hue of each image. The final WSI patches                   
for training consisted of ~60% no-tumor and ~40 % tumor classes. The ResNet network was trained for 50 epochs on                    
the augmented training set, starting with an initial learning rate of 0.001 and decaying by a factor of 0.9 every two                     
epochs. Models used multiclass cross-entropy loss function while training​28​. ResNet-18 was selected over alternative              
architectures (ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152) since it had the smallest number of              
parameters that led to the fastest training time and achieved a similar performance.  

 
Figure 3. Visual comparison of the performance of ImageNet pre-trained ResNet-18 versus ResNet-18 for tumor classification                
that has been trained on only prostate histopathology images. In each box, the central mark is the median, the box edges are                      
the 25th and 75th percentiles, the whiskers extend to the most extreme data points, and the outliers show training accuracies in                     
initial iterations. The ResNet-18 classifier network trained for 37 iterations (each dot shows the value of accuracy in each                   
iteration) in three replicas (Run1, Run2, and Run3).  
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4.3  Classification using H&E dye-stained and computationally H&E stained images 

In the first experiment, we used a pre-trained ResNet-18 and retrained it on ground truth 78,764 H&E dye-stained                  
patches with tumor annotations -Classifier I. The mean and standard deviation of the entire training set were used to                   
normalize the color channel values. All patches had fixed length and width of 1024×1024, except patches generated                 
at the edges. Resizing to fixed size was performed by zero-padding rather than a conventional approach of scaling up                   
patches using interpolation. Hashemi et al.​29 have shown that zero-padding has no effect on the classification                
accuracy while resulting in better computational efficiency because neighboring zero input pixels do not activate their                
corresponding convolutional filters in a deeper layer. Wang et al.​30 demonstrated the clinical advantage of               
zero-padding to prevent the risk of deforming the histological patterns in the border patches that may occur with                  
scaling. In the second experiment, illustrated in Figure 4, we trained another Resnet-18 model -Classifier II, using                 
computationally H&E stained images generated by our previously published GAN-CS model​9​. For both classifiers              
single core non-stained WSIs and their registered H&E dye stained or computationally H&E stained were patched                
into 1024×1024 sizes, registered and fed into the GAN-CS model. Table 3 lists Classifier I and Classifier II                  
performances using accuracy, precision, recall and F1-score metrics. Classifier II outperformed Classifier I when              
deployed in the end-to-end framework. This result can be explained based on the fact that the data for training the                    
Classifier II in the end-to-end system comes from the same distribution. Classifier I had better recognition of                 
no-tumor tissue patches than tumor tissue patches (precision>>recall), however, recognition of tumor patches             
increased significantly in Classifier II. Classifier II was finally used in the end-to-end system.  
 

Table 3. Accuracy, precision, recall, and F1-score over test data with computationally H&E stained images using different                 
configurations where Classifier I and Classifier II integrated in the end-to-end system. 

 

                                   ‘  
Figure 4. Block diagram of the Resnet18 Classifier II in the training phase. Single core non-stained WSIs and their registered                    
dye-stained WSI were patched and fed into the GAN-CS model. The computational H&E-stained images were created and                 
used as training and validation inputs  to classify each patch as tumor or no-tumor. 
 

4.5 Weakly supervised tumor localization 
Gradient Backpropagation (GBP) approach​31 was used to compute a saliency map for localizing the tumor regions.                
Using this method, by visualizing the activation of the higher layer neurons in the network we could identify which                   
input image pixels are important to output tumor classifications from the ResNet18-model as shown in Figure 4. This                  
was done by adding an additional guidance signal from the higher layers to usual backpropagation. For evaluation of                  
pixel-wise localization of regions of interest using the GBP algorithm, we employed a standard segmentation metric                
called Dice index​32 (Dice, 1945). Dice index is a measure of agreement or similarity between two sets of samples.                   
Given True Positive pixels (TP) as a set of common pixels belonging to both the ground truth mask and segmentation                    

 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 
Classifier I 79.60 87.63 59.76 71.06 
Classifier II 86.37 85.05 81.90 83.44 
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mask, False Positive pixels (FP) as a set of pixels belonging to the segmentation mask but ground truth mask, and                    
False Negative pixels (FN) as a set of pixels belonging to the ground truth but segmentation mask, we use a final                     
Dice index (Eq.1) with a small modification as follows: 

           ​(1)DiceIndex   =  TP
TP  + αFP  + (1 − α)FN  

Dice index ranged in the interval [0, 1], where the higher the value, the more concordant the segmentation and the                    
ground truth. α denotes a coefficient in the interval of [0, 1] where it is usually set to 0.5 that represents a balance                       
between FP and FN. However, this was not aligned with our weakly supervised context and the coarse ground truth                   
annotation of the data that can introduce more FN pixels. To remedy this, we assigned a greater value of 0.7 to α,                      
decreasing the impact of FN pixels for evaluation of the localization performance of the model. The evaluation of the                   
GBP localization technique over our H&E dye stained and computationally stained test datasets are listed in Table 4.                  
The mean Dice index was computed over all tumor patches (aDice index) and Dice index on correctly classified                  
tumor patches (cDice index) was used to measure how well it predicted positive tumor regions. The weakly                 
localization algorithm achieved similar dice indices on both test datasets used for training Classifier I (ground truth                 
H&E dye stained images) and Classifier II (computational H&E dye stained images). The localization results for a                 
sample image that was classified correctly as tumor is shown in Figures 6 and 7. We also trained a U-Net                    
architecture​33 on our H&E dye stained dataset in a fully supervised setting to obtain an upper bound performance in                   
terms of pixel-wise localization. The learning rate was set to 0.1, the batch size was set to 16. The model was trained                      
for 100 epochs and the learning rate was divided by two every five epochs. 

 
Table 4. Mean Dice index across all tumor patches (aDice index) and across all correctly classified tumor patches (cDice                   
index) obtained with weakly supervised localization models and the Gradient Backpropagation for H&E dye stained and                
computationally stained test datasets. 

 

 
Figure 5. Automated end-to-end deep learning system for classification and tumor localization from native non-stained               
pathology images. (a) The cGan pix2pix-based model (GAN-CS) accepts a native non-stained patch and generates a                
computationally H&E-stained patch. (b) The classifier takes the computational stained patch image from the GAN-CS model                
and classifies it as tumor or no-tumor. (c) The deep weakly localization algorithm was then applied to the Resnet-18                   
classifier model to extract regions of interest (localization map) 

 

Test Data aDice index cDice index 
H&E dye stained 60.59±2.20 66.61±2.03 
H&E computationally stained 60.51±2.17 65.07±1.99 
U-Net 67.31± 2.01 70.24±1.86 
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(a) (b) (c) 
 

(d) (e) (f) 

Figure 6. Localization results for sample ground truth H&E dye and computationally H&E stained images that were                 
classified correctly as tumor. Panel (a) H&E dye-stained image, (b) ground truth tumor annotations by pathologist, (c)                 
localization map by using the Gradient Backpropagation. Panels (d), (e) and (f) follow similar order for computationally                 
H&E stained images (bottom row) 
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(a) (b) (c) 

 

(d) (e) (f) 

Figure 7. Localizing tumors in prostate core biopsy images by the proposed end-to-end framework described in this study. (a)                   
computational H&E stained images, (b) localization by the Gradient Backpropagation, (c) superimposed image where the               
regions with strong activations, shown in green, represent tumor regions. Panels (d), (e) and (f) follow similar order as another                    
sample image. 

 

 ​5. RESULTS AND DISCUSSION 
We propose an automated end-to-end framework for histopathology image analysis that takes a non-stained image,               
provides H&E contrast with computational staining technique, and then detects and localizes the histologic patterns of                
prostate tumors. Inspired by the gold standard diagnosis by pathologist that often look at WSI at low magnification to                   
find potentially important regions and then zoom in to the high magnification to perform more accurate analysis of the                   
tissue structure, we leveraged patch level tumor detection and localization that can provide deep learning models with                 
higher resolution for tumor recognition. We also explored different patch sizes (clinically and computationally) to find                
suitable sizes for crucial diagnostic information and report that 1024×1024 patch size is the most optimal. We also                  
explored the efficacy of transferring features extracted from the Resnet-18 classifier trained by a large natural image                 
database, ImageNet, to pathology images. Transfer learning made our network activation features more suitable for               
pathology images by learning subtle features that capture complex clinical representation. Our final strategy involved               
using a pre-trained network as a feature extractor and then fine-tuning on H&E dye and computationally stained WSI.                  
Furthermore, we investigated the optimal class distribution for tumor and no-tumor classes in our classification task by                 
using random under-sampling technique that involves randomly selecting examples from the no-tumor class as a               
majority for training. Our results showed that a ratio of no-tumor patches to tumor patches when equal to 1.4 led to the                      
best performance. Increasing and decreasing this ratio negatively impacted the accuracy of the classification. In our                
final model, data distribution was ~1.49 and we expect our training samples to ideally be representative of the                  
population that the model will be applied to. The ResNet-18 classifier network trained on ~79,000 patches of size                  
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1024×1024 with magnification factor 20X for 50 iterations in three replicas. After augmenting the training dataset by                 
applying flipping and rotation, we achieved performance of 86.37% accuracy and 85.05% precision. The Classifier II                
outperformed the Classifier I when integrated with Gan-CS in an end-to-end pipeline (Table 3). It had higher                 
sensitivity (Recall) compared to Classifier I that shows lower numbers of tumor patches that are classified as no-tumor                  
(FN). Furthermore, the higher F1 score and accuracy in Classifier II reveal better quality of computational images than                  
H&E dye-stained images in detecting neoplasm regions. The low recall values obtained in all three experiments                
suggests that coarse/ambiguous labels of WSIs according to the diagnosis without dense annotation generate more               
false negative samples. The deep weakly supervised GBP model integrated into our end-to-end framework and               
produces an activation map where high activation responses correspond to image region of interest without the need                 
for pixel-level annotation. From a clinical perspective, pixel-wise region localization can provide a more accurate and                
visual explanatory factor for classification of images to tumor or no-tumor. Extracting regions of interest as highly                 
desirable property in our end-to-end pipeline, for instance, can be used by the pathologist or be further inspected if                   
they indicate cancerous regions. 

 
 

6. CONCLUSIONS 
This study reports an end-to-end deep learning framework for virtual H&E staining, automatic classification, and               
localization of prostate tumors from non-stained core biopsy images. Three deep learning methods, the pix2pix,               
ResNet, and GBP, were trained and validated for high performance. The proposed end-to-end system consists of the                 
GAN-CS model, the ResNet-18 classifier, and the deep weekly supervised learning model. A computationally H&E               
stained patch was first generated from a non-stained input image using the GAN-CS model, and then was fed into a                    
Resnet-18 classifier for classification as tumor or no-tumor. A deep weekly-supervised learning GBP algorithm was               
used to localize class-specific (tumor) regions on images outputted from the Resnet-18 classifier. If an input image                 
patch was classified as tumor, the GBP localization module would generate a saliency map locating the tumor regions                  
on computationally stained images. The proposed end-to-end framework design makes optimal use of the modular               
design with the simple strategy to train its modules independently and structure their connectivity which is far more                  
efficient than end-to-end central learning that can push network architecture to keep growing more and more complex                 
in our task. In this way, the system maintains the valuable information contained in each individual component that                  
could be ignored during end-to-end training. From the clinical perspective, fulfilling automated diagnosis             
requirements (staining, classification, segmentation) in one place, can help the diagnosis and treatment of prostate               
cancer in the early stages by improving consistency and speed in diagnosis. Our pixel-wise region localization                
capability provides accurate visual explanations for the classification of images as tumor or no-tumor. To the best of                  
our knowledge, this is the first work attempting to discriminate tumors as small as 1024×1024 pixels from                 
non-cancerous ones in the prostate using a non-stained whole slide image. Our core contributions are to extend the                  
utility and performance of generative virtual H&E staining deep learning methods and models. We also extend the                 
utility of computationally H&E stained images for the medical imaging community to use them for tumor                
localization and classification. 
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