Regulation of Vibrio cholerae Virulence Gene Expression and Pathogenesis in Response to Microaerophilic Growth Conditions

Pratik Shah. Ph.D.

Postdoctoral Research Fellow

Vibrio cholerae life-cycle

Surface biofilms

Copepods

Copyright © 2005 Nature Publishing Group Nature Reviews | Microbiology

How cholera affects the body

Cholera is an acute intestinal infection that causes severe diarrhea. dehydration and, if not treated promptly, death.

Stomack

Small

intestine

Large intestine

How it spreads

- · People ingest water or food contaminated with cholera bacteria
- In epidemic, feces of diseased person is source of contamination

Treatment

- · Salt solution, intravenous fluids, antibiotics
- · In unprepared communities. death rates can be as high as 50 percent

© 2010 MCT

Source: World Health Organization

In the large intestine

Bacteria multiply rapidly

- Toxin from bacteria penetrates cells of intestinal wall
- Toxin prevents intestine from absorbing water from digested food; diarrhea. dehydration result

Vibrio cholerae clones

Virulence inducing cascade in Vibrio cholerae

Pathway by which cell density regulates expression of the major *V. cholerae* virulence factors CT and TCP

Matson, J. S. et al. 2007. Infect. Immun. 75(12):5542-5549

Infection and Immunity

O₂ gradients encountered by Vibrio cholerae

Oxygen concentration low

In vitro cholera toxin production assays

C6706 Strain

Growth-"Shaking phase"

(AKI media, 37°C)

O395 Strain

pH 6.5/30°C/Shaking

Non shaking

Microaerobic/Anaerobic

(LB media)

OR

Low oxygen induces cholera toxin production by Vibrio cholerae

Both the classical O395 and El Tor C6705 strains produce cholera toxin under microaerobic, but not aerobic, conditions.

Prolific replication of V. cholerae in the small bowel during infection

Environmental Aquatic Reservoirs Estuaries, Ponds and Rivers

A modified AKI induction method for cholera toxin production

Hypotheses

Low oxygen tension encountered by *Vibrio cholerae* in the host induces cholera toxin production and disease

Cholera toxin production is spatiotemporally regulated in the small intestine in response to oxygen and other alternative electron acceptors

Screen to identify two-component systems regulating cholera toxin production under microaerobic and/or anaerobic conditions

V. cholerae two-component systems identified in the screen

Two – Component System	Sensor/ Regulator
TorS (VCA0709)	Sensor
(Anaerobic metabolism)	
Kdp (VCAO531)	Sensor
(K+ transport and turgor)	
VCAO142	Sensor
VCAO239	Regulator (orphan)
(Member of the <i>E. coli</i> two-component regulatory system <i>czcS/ czcR</i> involved in control of cobalt, zinc and cadmium homeostasis)	

Tor system in E. coli during anaerobic respiration

torS regulates cholera toxin production in C6706 after microaerobic induction at 37°C/standing in AKI media**

torS regulates cholera toxin production in O395 strain after microaerobic growth at 37°C in AKI media**

torS does not affect_cholera toxin production in O395 strain after aerobic induction at pH 6.5/30° C/shaking/ LB media**

The torS gene may regulate cholera toxin production independent of the canonical virulence-inducing cascade in Vibrio cholerae C6706 strain**

VE RI LAS

The tor regulon is important for optimal CT production after microaerobic induction at 37°C/standing in AKI media**

Prolific replication of V. cholerae in the small bowel during infection

Environmental Aquatic Reservoirs Estuaries, Ponds and Rivers

Essentiality of tor regulon genes for successful colonization of the infant mouse intestine**

Pooled data from three independent experiments

Summary

V. cholerae modulates toxin production in response to oxygen availability

low oxygen/anaerobsis serve as signals to turn on toxin production

- torS is essential for optimal cholera toxin production under low-oxygen conditions
- Mutant strains lacking torS or other tor regulon genes are severely attenuated in vivo
- Availability and the type of alternative electron acceptors play an important role in disease outcome
- *V. cholerae* has fine tuned it's virulence based on the alternative electron acceptors it encounters in the environment

Developing nations and cholera

Cholera cases

