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Data Science in Clinical 
Pharmacology and Drug 
Development for Improving  
Health Outcomes in Patients
Richard W. Peck1,*,†, Pratik Shah2,†, Spiros Vamvakas3 and  
Piet H. van der Graaf4,5

Data Science is about drawing useful conclu-
sions from large and diverse data sets through 
exploration, prediction, and inference.1 
Alternatively, Wikipedia defines data science 
as “a multidisciplinary field that uses scien-
tific methods, processes, algorithms, and sys-
tems to extract knowledge and insights from 
structured and unstructured data.”2 Clinical 
pharmacology has always been a quantitative 
discipline making extensive use of different 
analytical methods to extract knowledge from 
data, and the rapidly evolving field of data 
science offers many opportunities for clini-
cal pharmacologists. In this issue of Clinical 
Pharmacology & Therapeutics (CPT), we ex-
plore many of these opportunities and how 
they can benefit this discipline. This issue is 
also the first to be fully dedicated to a single 
topic, where the perspectives, reviews, and the 
original research articles are all related to the 
same theme. We also introduce the first tuto-
rials, a new article type for CPT, dedicated to 
helping readers to understand new areas of sci-
ence. Data science is impacting the data sources 
and types that are becoming available, how 
data are captured and made available to users, 
and how they are analyzed and interpreted. 

This issue considers how each of these can be 
relevant to clinical pharmacologists and clini-
cal development researchers (Figure 1).

Traditionally, clinical pharmacology, and in-
deed much of drug discovery and development, 
has proceeded through carefully designed ex-
periments and clinical trials that test a hypoth-
esis. Phase III clinical outcome trials evaluating 
new therapies and vaccines are among the most 
complex experiments performed in medicine, 
and a common theme is the difficulty of pre-
dicting clinical results in a wider patient base 
after regulatory approvals. The high cost of 
clinical trials, low success rates, and potentially 
reduced efficacy of approved therapies in larger 
populations can cost healthcare industries, 
government, and academic research hospitals 
millions of dollars each year, may drive up costs 
and delay life-saving treatments to patients, 
and in some cases lead to adverse events. Data 
in clinical trials are usually captured to answer 
the specific question under investigation. Real-
world data (RWD) is data collected outside the 
boundaries of a specific experiment or clinical 
trial, often for reasons other than scientific hy-
pothesis testing, and is thought of as an import-
ant source of additional or novel information 
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often not captured during clinical trials. A key 
challenge of using RWD as evidence for clinical 
development or efficacy, though, is the lack of 
randomization often resulting in limited causal 
inference in observational data and interfer-
ence by confounding factors. However, data 
providers are now making such data available 
for scientific investigation, leading several data 
scientists to incorporate emerging analytics, in-
cluding deep learning for generating actionable 
evidence to overcome key limitations of the 
current drug development process.3 The US 
Food and Drug Administration (FDA) has also 
published draft white papers and guidelines to 
incorporate RWD in clinical decision making.4

A recent survey paper showed that avail-
ability of observational data is quite limited, 
their use is limited for clinical development, 
and randomized controlled trial results con-
tinue to dominate regulatory submissions.5 
However, the utility of RWD should not be 
constrained to accelerate clinical develop-
ment, but rather expanded to isolate, enrich, 
and study responses, outcomes, and adverse 
events in more diverse populations reflecting 
heterogeneity in genotypes, genders, and socio-
economic biases which have profound impact 
on therapeutic efficacy and generalization of 
clinical trial results. Thus, there is a significant 
opportunity to provide societal impact and 
benefit by conducting carefully designed and 
hypothesis-driven RWD studies. There are also 
many opportunities where RWD can benefit 

clinical pharmacologists, including streamlin-
ing or even replacing clinical trials in a few 
instances,6,7 informing on difficult-to-study 
populations, such as children,7 or rare diseases, 
drug repurposing,8 pharmacovigilance,9 phar-
macokinetic/pharmacodynamic modeling,10 
and physiologically-based pharmacokinetic 
modeling.11 Given the range of opportunities, 
we must also understand the issues and chal-
lenges in how RWD should be used12–14 and 
ensure that appropriate validation is under-
taken for new methods.15

RWD is also used commonly in the context 
of the explosion of data available from –omics, 
continuous, ambulatory (usually in the real 
world) patient-monitoring technology, in-
cluding wearables and other high-capacity data 
capture and analytical methods (often referred 
to as Big Data). The potential of Big Data in 
drug development is of interest to regulators,15 
and clinical pharmacologists are well placed 
to guide integration of Big Data analyses with 
modeling16 as a way to use, analyze, and inter-
pret the data. One of the new tutorial articles in 
this issue describes how to combine -omics data 
with mechanistic modeling, a core competency 
of our discipline.17 Here, too, it is important 
to understand the limitations. We must be fa-
miliar with how data are collected using novel 
technologies, such as handheld devices or wear-
ables,18,19 and contribute to the development 
of appropriate reporting standards to ensure 
data quality.20

Figure 1 Clinical Pharmacology & Therapeutics April 2020 cover image.
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Machine and deep learning, whether di-
rectly through interacting with smart phones, 
smart speakers, and lifestyle apps, or indi-
rectly, for example through life insurance 
companies predicting our risk and setting 
our premiums or banks making investment 
decisions with our savings, is now being rou-
tinely used. In most areas of life sciences and 
health care there is widespread consideration 
of the potential opportunity for and impact 
of machine learning and artificial intelligence 
(AI), including deep learning. The vast major-
ity of applications of deep learning in health 
care today are examples of pattern recogni-
tion, such as assessment of diagnostic images, 
which in computer science is considered nar-
row AI. These efforts are noteworthy and 
exciting but do not represent fundamental 
research in AI systems capable of cognition, 
reasoning, generative tasks, reinforcement 
learning, and other human-like traits, referred 
to as "general" or "broad AI," which will also 
have significant impact on clinical data sci-
ence in coming years. A recent description of 
generative deep learning algorithms for image 
translation and computational hematoxylin 
and eosin staining of whole slide pathology 
images is an example of expanding pattern 
recognition to generative tasks for faster clini-
cal inference.21 There is also promise for using 
machine and deep learning to find simple pat-
terns in patient data that could provide early 
diagnostic or prognostic tests or guide thera-
peutic decision making. Early examples of AI 
agents exhibiting human learning capabilities, 
such as reinforcement driven by actions, re-
wards, and penalties have also been described 
recently for dose deescalation algorithms 
using pharmacokinetic/pharmacodynamic 
models.22

Thus, the terms "artificial intelligence" and 
"machine learning" are widely used, including 
in Hollywood film titles, but one needs to in-
terpret them fairly and accurately. The second 
tutorial in this issue provides a primer in basic 
machine learning to demystify some concepts, 
methods, and applications.23 In our view, there 
are many exciting opportunities for machine 
learning to help clinical pharmacologists and 
drug discovery and development.24,25 Often 
the biggest advances occur when different 
disciplines intersect, and pharmacometrics 
should be fertile ground to benefit from ma-
chine learning—indeed there is already quite a 
literature on this topic. In this issue we add to 
the discussion with examples of how machine 

learning can help pharmacometricians,26 preci-
sion medicine and precision dosing,25,27 iden-
tification of useful drug combinations,28 and 
pharmacovigilance. We are happy to agree with 
Brian Corrigan29 that AI will not replace clini-
cal pharmacologists but instead will help us be 
more successful.

One way to make data “bigger” is open 
sharing such that all of us have easier access 
to more data than one can collect in their 
own work. In drug discovery and develop-
ment, as with any activity incentivized and 
rewarded through intellectual property, 
some data will have to remain confiden-
tial for a period of time, but there is much 
else that can be shared immediately, and we 
strongly encourage such activities.30,31 As 
methods to investigate and learn from Big 
Data advance, this sharing becomes essential 
to allow us to tackle big problems. Examples 
in this issue include improving pediatric pre-
scribing through collaborating to understand 
development ontogeny32 and the identifi-
cation of novel treatments for devastating, 
untreatable, or almost untreatable diseases.33 
Sharing models, or at least making them 
transparent, is equally important as a means 
to stimulate understanding, to further ad-
vances, and to encourage wider uptake of the 
models themselves.30
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