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Abstract—Fluorescent biomarkers are important indicators
of disease, but imaging them can require specialized and
often-expensive devices. Periodontal and dental diseases result-
ing from microbial plaque biofilms, if diagnosed early with
biomarker images and expert knowledge, can be treated to
prevent occurrences of serious systemic illnesses. We report two
convolutional neural network classifiers trained with dentist
annotations of disease signatures and fluorescent porphyrin
biomarker images to identify dental plaque in white light
images as a per-pixel binary classification task. The classifiers
were trained and tested with millions of image patches from
two datasets collected from 27 consenting adults using handheld
intraoral cameras. The areas under the receiver operating
characteristic curves for the test sets were calculated to be
0.7694 and 0.8720. Once trained, the classifiers predict the
location of plaque in white light images without requiring
specialized biomarker imaging devices or expert intervention.
This generalized approach can be useful in other domains
where diagnostic biomarker predicting can augment expert
knowledge using standard white light images.
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I. INTRODUCTION

Identification and analysis of disease imaging biomark-

ers have provided clinical experts with faster and more

efficient diagnostic methods. Computationally automating

these methods can offer affordable and scalable technology-

enabled health screenings. Fluorescent biomarkers play an

important role in the screening of oral cancer and retinal

diseases as well as conditions like periodontal disease and

dental plaque [1], [2]. Biomarker images have a high degree

of accuracy, but capturing them requires specialized and

often expensive hardware, annotations, and analyses by

experts, resulting in substantial diagnosis delays and thus

are seldom used for patient diagnoses. There is also a

lack of standardization for the various approaches used by

the individual software accompanying biomarker imaging

systems, causing many to be considered suboptimal by

physician experts.

* Corresponding author.

Machine learning and computer vision have automated

many aspects of human visual perception. Convolutional

neural networks (CNNs) have been used to great effect

in numerous computer vision tasks since their introduction

for wide-scale image classification [3], largely due to their

incorporation of spatial information and their invariance to

translation [4]. CNNs are now the predominant technique

for analyzing medical images [5]. The specific task of

segmentation, which classifies each pixel of an image with

membership from among a group of classes, has been

studied in medical contexts as diverse as cardiac image

segmentation [5] and whole-slide cancer histopathology

[6]. Medical segmentation tasks are typically formulated to

predict expert labels on specific imaging modalities, such

as locating tumors or identifying distinct parts of organs,

in either two-dimensional or three-dimensional images [5].

While CNNs have been increasingly used for both medical

and non-medical semantic segmentation [7], [8], they have

not yet been brought to bear on the specific segmentation

problem of predicting the locations of biomarkers in white

light images captured by mobile phones and other low-cost

imaging devices.

Dental imaging is a particular instance of biomarker

imaging that can supplement expert knowledge. A dentist

or dental hygienist usually examines teeth and can assign

individual tooth scores, as with the Quigley-Hein index,

to quantify the amount of plaque on a tooth in aggregate.

Such an expert can also provide localized annotations on a

white light image based on their expert knowledge of what

plaque looks like [9]. Both approaches are time-consuming,

subjective, and often only identify plaque visible to the

human eye. Fluorescent dyes that bind to plaque are also

applied to teeth and imaged or inspected live by a dentist

or dental hygienist, with the same limitation in sensitivity

and specificity [9]. However, illumination with violet and

blue light can excite the porphyrins produced by bacterial

plaque to emit light with wavelengths of approximately

650 nm, allowing for the capture of fluorescent images of

plaque biomarkers with high sensitivity and specificity [2],
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Figure 1: General labeling and classification pipelines. (a) The process to construct union labels from human experts and a

biomarker imaging device for every pixel in a white light image. (b) The convolutional neural network architecture for both

classifiers that learns a distribution of union labels over white light image patches. It takes as input a 21×21 pixel white

light image patch and outputs a probability between 0 and 1 that the patch’s center pixel would be labeled as plaque. This

is run for every patch in an input image to determine a probability of plaque for each pixel. Conv.: convolutional layer. Max

pool: maximum pooling layer.

[10], [11]. A recent publication from our group reported the

construction and clinical validation of a low-cost and open-

source porphyrin imaging device and an associated imaging

processing algorithm [2]. Commercial intraoral cameras

equipped with light-emitting diodes are available to capture

porphyrin signatures and are considered highly sensitive,

but they lack accurate, clinically-validated image processing

algorithms and also do not identify non-fluorescent plaque

identified by human experts [11].

In this report, we take up the task of automated and

device-independent prediction of porphyrin and plaque sig-

natures from standard white light intraoral images of teeth.

Datasets of white light and corresponding fluorescent images

showing porphyrin and plaque signatures on teeth were

captured using a commercial intraoral camera, ACTEON

Soprocare (ACTEON North America, Mount Laurel, New

Jersey, USA), referred to as the commercial device (CD), and

our own clinically-validated research device (RD). Expert

raters also labeled plaque signatures using the white light

images captured by both devices. Fig. 1 shows our general

approach for labeling and classification. Our fully-trained

and validated CNNs, after learning from both fluorescent

biomarker images as well as expert labels, accept standard

white light intraoral images as inputs and predict the location

of plaque pixels with high sensitivity and specificity without

requiring device or expert intervention.

II. RELATED WORK

A. Plaque segmentation in images

Image processing algorithms have been previously de-

vised by others to segment dental plaque in white light

images but were not comprehensive because plaque is not al-

ways easily detectable in a white light image alone. Kang et
al. segmented plaque in white light images by separately us-

ing (A) fuzzy c-means clustering with an objective function

accounting for spatial proximity [12] and (B) cellular neural

networks to interactively choose a threshold for histogram

thresholding [13]. Both approaches produced good quali-

tative results, but relied on plaque having non-fluorescent

pigmentation distinct from tooth surfaces and did not capture

fluorescent signatures associated with biomarkers or expert

annotations.

Segmentation algorithms have found more success with

fluorescent biomarker images, where the plaque is often a

distinct color, allowing for increased sensitivity and speci-

ficity with image processing techniques like color histogram

thresholding [2], [9], [14], intensity thresholding [15], and

superpixel graph-cut [16]. Segmentation of each type of

image alone is limited, even in the ideal scenario of perfect

segmentation, to the signatures of plaque captured by an

imaging modality and also lack expert annotations.

B. Convolutional neural networks

A CNN is a type of artificial neural network; it is a

sequence of linear and non-linear functions applied to input

data in which the linear functions, in the layers closest to the

input data, take the form of convolutions instead of arbitrary

linear transformations. Convolutional layers are each usually

followed by maximum pooling layers, finally followed by

fully-connected layers and a softmax function. The output of

a CNN is most often interpreted as a probability distribution

over possible classes. CNNs are made to learn a distribution
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Figure 2: Representative images and labels from the collected datasets. Label images in columns (ii), (iv), and (v) in both

subfigures show plaque as white and non-plaque as black. (a) Representative sets of images from the research device dataset.

Each row shows images corresponding to one white light image across all grids. Columns, from left to right: (i) white light

image, (ii) localized expert annotations for the white light image, (iii) fluorescent biomarker device image of the same

location with porphyrins shown in red, (iv) labels extracted from the biomarker image by thresholding and registering to

align with the white light image, and (v) the union label created from combining plaque in the expert label and the biomarker

label. (b) Representative sets of images from the commercial device dataset. Plaque in (iii) is shown in yellow.

over training data with stochastic gradient descent, with

gradient calculation by backpropagation. Convolution allows

for sparse weights and maximum pooling for translation

invariance [4]. Network architectures, fixed configurations

of layers with corresponding parameters, are often reused

for multiple tasks once they have been proven to classify

accurately. The architecture called VGG, a deep network

with uniformly small receptive fields, learns very hierarchi-

cal features and is frequently used for object detection [17].

For the task of segmentation, both patch-based classifiers,

which take into account a small neighborhood around each

pixel, and full-image classifiers have been used to classify all

pixels in an image [5]. Fully convolutional networks (FCNs),

which use only convolutional and maximum pooling layers

to produce a per-pixel heatmap rather than a single distribu-

tion over categories, have been increasing in popularity for

medical image segmentation since they were initially used

for semantic segmentation [5], [7].

III. TECHNICAL APPROACH

We model the white light segmentation problem as a

per-pixel binary classification implemented with a patch-

based CNN. Two such CNNs were trained on the white

light RGB intensities of porphyrin plaque pixels identified

by two different fluorescent biomarker imaging devices and

the regions annotated by experts on corresponding white

light images. The specialized biomarker imaging devices

were incorporated during the training phase of the algorithm

while only a white light image was used for classification.

The performance of the algorithm was evaluated using two

different fluorescent biomarker imaging devices which differ

by capturing unique signatures associated with newer (CD)

and older and more mature plaque (CD and RD) in differing

types of plaque images. Fig. 1 shows the full label extraction

and classification pipelines. Fig. 2 shows representative sets

of images in the collected datasets.

A. Classifier model

We hypothesize that plaque’s presence on part of a tooth

can be deduced from the information contained in the

immediate neighborhood. Hence, the CNN architecture takes

as input an n × n white light image patch and outputs a

prediction of whether the patch’s center pixel corresponds

to plaque or not. We propose using this local patch-based

method for classifying plaque because plaque’s free-form

shape makes bounding boxes a poor model of plaque pres-

ence; a per-pixel annotation is required. Training on patches

rather than full images additionally allows for much more

training data from fewer images.

The network architecture is a truncated version of VGG,

as one of our goals was to use the smallest possible model

with a great enough capacity to learn the training distribution

[17]. We experimentally determined the minimum depth that

did not result in underfitting on the training set, which

is up to and including the thirteenth layer of the VGG16

architecture, followed by a smaller fully-connected layer

of 256 nodes and the final softmax function. The CNNs

were trained using adaptive stochastic gradient descent with
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momentum. The loss function captures the softmax cross-

entropy in classification of all patches in the current mini-

batch. Gradients are calculated by backpropagation. To help

prevent overfitting to the training data, we trained with a

dropout probability of 0.5 [18].

There is a trade-off between patch size and the amount

of different images required; larger patches contain more

contextual information around the center pixel but can there-

fore each capture less of the variation than a smaller patch

would, thereby requiring more training patches. That is, the

space of variation is larger for larger patches. After initial

optimization experiments, a patch size of 21×21 pixels was

chosen. Both classifiers were implemented in TensorFlow

[19], and training was performed on an NVIDIA Corporation

GM200 GeForce GTX TITAN X. Training hyperparameters

were determined through grid search: mini-batch size of 100,

learning rate of 1× 10−6, 3 epochs.

B. Human subjects datasets

The Massachusetts Institute of Technology’s Committee

on Humans as Experimental Subjects reviewed and approved

protocol 1603518893. The CD is an intraoral probe that

illuminates plaque with both 450 nm and white light, and

then digitally embellishes the color of newly-formed plaque-

affected areas in hues of yellow and orange [11]. The

RD captures porphyrin signatures associated with mature

plaque biofilms formed by anaerobic bacteria via filtered

light images; details of the RD are available in the prior

work [2]. The RD is also capable of capturing white light

images.

27 adult subjects consented to imaging of incisors and

canines. Each subject was imaged sequentially in (1) CD

white light mode, (2) CD plaque mode, (3) RD white light

mode, and (4) RD plaque mode. In total, 47 pairs of images

were captured with the CD, and 49 pairs were captured with

the RD. Illumination conditions were kept as constant as

possible across subjects in each dataset.

C. Annotations: biomarkers and experts

Datasets from the CD and RD comprise white light

images and corresponding fluorescent biomarker images. To

ensure that the white light and biomarker images aligned

with each other, we used a well-established image registra-

tion technique: a perspective transformation that minimizes

the mean-squared error between the intensities of the images

was applied to the biomarker images [20]. Binary pixel-

level classifications of plaque and not-plaque were extracted

by histogram thresholding the fluorescent biomarker images

using empirically-determined thresholds for each dataset [2].

The devices are not guaranteed to capture all plaque in an

image due to the absence of pophyrins in some plaque.

Expert dental professionals independently annotated regions

showing plaque on the white light images of teeth captured

by both devices.

We then constructed union labels to represent the full

extent of plaque detected by both the experts and fluorescent

biomarker imaging, as shown in Fig. 1a. We believe this

is a clinically valid approach because both expert labels

and binary images capture independently verified signatures

of plaque that are not-entirely mutually inclusive. A small

percentage of the per-pixel plaque labels in each union

label image were detected by both the expert and device,

indicating distinct roles for each labeling method. These

final pixel-level annotations contained in the union are the

labels used to train and test the classifiers. Fig. 2 shows

representative sets of images from both datasets.

D. Training data and test data

The pixel dimensions of the RD images were 512× 384
while those of the CD images were 640× 480. Accounting

for the margins, each type of image is represented by

183,393 or 290,625 21×21 patches, respectively. A random

sample of half the patches in each training image were

used for training to limit overfitting on extremely similar

patches, while all patches in test images were used for

testing. Patches from a single image were not split among

the train and test sets.

Each image was assigned to one of three groups based on

the amount of plaque in the union label: low plaque, medium

plaque, high plaque. We randomly assigned 70% of images

from each group to the training set and the remaining 30%

to the test set to ensure that the plaque quantity distribution

of the training and test sets were roughly the same. Training

only on images with high plaque and testing on images

with low plaque, for example, would likely produce many

false positives. For the CD dataset, 4, 687, 980 patches from

33 images were used for training and 3, 977, 694 patches

from 14 images were used for testing. For the RD dataset,

3, 209, 360 patches from 35 images were used for training

and 2, 750, 895 patches from 14 images were used for

testing. Images were normalized in the RGB colorspace, and

white light images in the RD dataset all received the same

color balancing to account for variation in illumination. Each

feature in the training set was standardized to have a zero

mean and unit variance, and the transformations with the

same parameters were applied to each feature in the test set.

The distribution of classes in the test data was skewed

towards non-plaque by a ratio of approximately 9:1. Over-

sampling the plaque examples forced the training set to

have an equal number of plaque and non-plaque examples

[4]. While this negatively impacted precision and recall

compared to training with a skew approximating that of the

test data, it prevented the classifiers from simply learning

the prior skew [21]. This was partially accounted for when

calculating test accuracies by choosing a final threshold that

minimized errors while weighting false positives more than

false negatives.
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Figure 3: Threshold-averaged receiver operating characteristic (ROC) and precision-recall curves for both test sets. Random

chance is shown as a dashed black line in all graphs. Error bars show 95% confidence intervals. (a) ROC curve for research

device (RD) test set. Area under the curve (AUC) = 0.7694. (b) Precision-recall curve for RD test set. AUC = 0.2679 (c)

ROC curve for commercial device (CD) test set. AUC = 0.8720. (d) Precision-recall curve for CD test set. AUC = 0.4784

IV. RESULTS AND DISCUSSION

RD dataset: Fig. 3a shows the receiver operating char-

acteristic curve (ROC) for the test set with an area un-

der the curve (AUC) of 0.7694. Training ROC AUC was

0.8324 (data not shown). Fig. 3b shows the precision-recall

curve. Training accuracy and test accuracy were 87.93% and

84.67%, respectively.

CD dataset: Fig. 3c shows the ROC for the test set with

an area under the curve of 0.8720. Training ROC AUC was

0.8839 (data not shown). Fig. 3d shows the precision-recall

curve. Training accuracy and test accuracy were 80.83% and

87.18%, respectively.

Both classifiers outperform chance, indicating that dif-

ferences between plaque and non-plaque patches can be

learned. Interpreting the ROC AUCs, the RD classifier has a

0.7694 probability of classifying a plaque example as more

likely to be plaque than a non-plaque example, and the

CD classifier has a probability for the same task of 0.8720.

The CD classifier performed better than the RD classifier,

especially with regards to the precision-recall curve. We

believe this is due to a greater variation in illumination

conditions for the white light images in the RD dataset.

The skew in the test sets can make the ROC curve over-

state the test set performance. The precision-recall curves

show that both classifiers have difficulty maintaining high

precision while having high recall, as is expected when

test sets are skewed [21]. When the test datasets were

artificially made to have an equal number of positive and

negative examples, the area under the RD precision-recall

curve increased from 0.2679 (Fig. 3b) to 0.7394 (data not

shown) and the area under the CD precision-recall curve

increased from 0.4784 (Fig. 3d) to 0.8541 (data not shown).

The test ROC AUCs remained relatively unchanged at

0.7574 and 0.8719, respectively (data not shown). The higher

areas under the precision-recall curves for the balanced test

sets indicate that test skew is responsible for the current

precision-recall curves. Collecting more test data would not

significantly decrease the skew, as it originates from the

Classification Errors

(a)

Classification Errors

(b)

Classification Errors

(c)

Classification Errors

(d)

Classification Errors

(e)

Classification Errors

(f)

True positive

False positive

False negative

Classified plaque

Figure 4: Classifications and errors overlaid on input white

light images. Left of each pair: classifications overlaid on the

input white light image. Right of each pair: Types of errors

with respect to union labels overlaid on the input white light

image. (a)-(c) Representative images from research device

test set. (d)-(f) Representative images from commercial

device test set.

general level of plaque in the population.

Fig. 4 shows predictions and the type of errors seen

from both classifiers. The classifier did not simply learn to

classify margins of teeth. If that had been the case, we would

have always expected a substantial number of false positives

around the margins of teeth with little plaque, which is not
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Research device dataset Commercial device dataset
AUC ± STD Accuracy ± STD AUC ± STD Accuracy ± STD

0.9822 ± 0.0025 96.25% ± 0.26% 0.9246 ± 0.0023 89.41% ± 0.06%

0.9633 ± 0.0061 93.88% ± 0.24% 0.9625 ± 0.0018 93.22% ± 0.14%

0.9621 ± 0.0200 94.34% ± 0.79% 0.9526 ± 0.0013 93.11% ± 0.20%

0.9257 ± 0.0059 83.97% ± 1.60% 0.9028 ± 0.0041 90.08% ± 0.19%

0.9222 ± 0.0290 93.40% ± 0.95% 0.8929 ± 0.0048 87.58% ± 0.26%

0.8908 ± 0.0130 89.71% ± 0.77% 0.8780 ± 0.0011 88.44% ± 0.17%

0.8224 ± 0.0410 87.63% ± 0.72% 0.8690 ± 0.0070 88.20% ± 0.16%

0.8179 ± 0.0260 82.53% ± 1.30% 0.8653 ± 0.0016 79.61% ± 0.13%

0.8087 ± 0.0270 92.46% ± 1.10% 0.8573 ± 0.0055 79.89% ± 0.30%

0.7991 ± 0.0240 87.52% ± 0.69% 0.8358 ± 0.0171 92.83% ± 0.58%

0.6936 ± 0.0190 85.93% ± 0.85% 0.8233 ± 0.0048 84.89% ± 0.25%

0.6476 ± 0.0350 72.80% ± 0.77% 0.8060 ± 0.0011 82.26% ± 0.15%

0.6238 ± 0.0088 91.54% ± 6.50% 0.7785 ± 0.0054 87.70% ± 0.51%

0.5890 ± 0.0150 87.63% ± 0.88% 0.7100 ± 0.0025 85.98% ± 1.28%

Mean 0.8177 ± 0.1335 88.54% ± 6.11% Mean 0.8613 ± 0.0683 87.37% ± 4.48%

Table I: Classification results for each image in the test

sets. Each row contains area under the receiver operating

characteristic curve (AUC) and accuracy for all the patches

in one white light image. STD: standard deviation.

the case in Fig. 4c.

Table I splits the test results for both classifiers by image.

The classifiers performed much better on some images than

others because the plaque in those images more closely

resembled the distributions of plaque in the training sets.

The classifiers are limited to predicting the types of plaque

they have been conditioned upon in their training sets.

More training data that fully captures the variety of plaque

formations and illumination conditions will improve accu-

racy and robustness. Additional training data under various

illumination conditions would likely improve performance,

especially of the RD classifier. More experiments can be

done toward improving the accuracy by increasing the patch

size and complicating the neural architecture. Reformulating

the patch-based CNN as an FCN may provide a significant

decrease in both training and testing time at the expense of

requiring more training data.

Because they were trained on the union labels, the clas-

sifiers learn more comprehensive signatures of plaque, en-

compassing both biomarker locations and expert annotations

which do not have significant overlap. Comparison with

previous plaque segmentation work is difficult due to this

enlarged notion of plaque. Patch-based CNNs have been

used to to predict expert labels or image-based labels, such

as dyes, in specific medical imaging modalities, but they

have not, to our knowledge, been trained on union labels.

V. CONCLUSION

We have shown two classifiers which successfully predict

the location of dental plaque in white light dental images to a

degree beyond that of chance. Our fully trained and validated

CNN, after learning from both fluorescent biomarker images

as well as expert labels, accepts standard white light intraoral

images as inputs and predicts the location of plaque pixels

with high sensitivity and specificity without requiring device

or expert intervention. This approach can be extended to

the numerous other conditions that can be detected with

fluorescent biomarker imaging, such as oral cancer and early

periodontal disease, as well as to non-oral domains where

diagnostic biomarker imaging is used to augment expert

knowledge.
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