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Abstract— Periodontal diseases are the largest cause of tooth
loss among people of all ages and are also correlated with
systemic diseases such as endocarditis. Advanced periodontal
disease comprises degradation of surrounding tooth structures,
severe inflammation and gingival bleeding. Inflammation is
an early indicator of periodontal disease. Early detection and
preventive measures can help prevent serious occurrences of
periodontal diseases and in most cases restore oral health. We
report a machine learning classifier, trained with annotations
from dental professionals, that successfully provides pixel-wise
inflammation segmentations of color-augmented intraoral
images. The classifier successfully distinguishes between
inflamed and healthy gingiva and its area under the receiver
operating characteristic curve is 0.746, with precision and
recall of 0.347 and 0.621 respectively. Dental professionals
and patients can benefit from automated point-of-care early
diagnosis of periodontal diseases provided by this classifier
using oral images acquired by intraoral imaging devices.
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I. INTRODUCTION

Gingivitis is the inflammation of gingiva around the tooth,
making the gums sensitive and likely to bleed. Gingivitis can
progress and lead to periodontitis, with severe inflammation
and infections in the surrounding structures of the teeth.
If left untreated, periodontal diseases can cause progressive
bone destruction and ultimately loss of tooth. Early detection
and treatment helps treat gingivitis and prevent tooth loss
[1][2].

Biomarkers provide a fast, accurate and non-invasive
way to diagnose several diseases and thus can be used
for prognostic screening along with monitoring of clinical
responses. Porphyin biomarkers have been used to detect
dental plaque and inflammation of gingival surfaces. Gums
and teeth, when illuminated with a blue light (405-450 nm),
fluoresce in the presence of porphyrin, produced by oral
bacteria in plaque biofilms and present in hemoglobin in
the blood [3]. Gingivitis results in an increased blood flow
around the inflamed gingiva, leading in turn to increased
red fluorescence (650 nm wavelength) from porphyrin in
the surrounding vasculature. Diagnoses of gingival diseases
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using intraoral imaging technologies is precluded due to
the high cost of specialized imaging systems and lack of
automated diagnoses.

Visual inspection and probing techniques have been tra-
ditionally used for diagnosis of gingival inflammation in
patients [4]. Although accurate, these methods are considered
subjective due to differences in training, experience and
location of the hygienists and dentists, creating errors in early
diagnosis of gingivitis. Computer vision, machine learning
and deep neural networks are becoming more effective
and can now perform automated and accurate diagnoses of
several diseases [5]

We describe an automated system that performs pixel-wise
segmentation of the inflamed gingiva to detect gingivitis and
periodontal disease using fluorescence images acquired by
an FDA-approved intraoral camera [6]. Intraoral fluorescent
images from 150 consenting adults, aged 18-90 years old,
were analyzed by dentists for gingivitis and then used to
train a machine learning classifier. The trained classifier
accepts an intraoral image of gums and teeth and provides a
localized and automated detection of gingival inflammation
and periodontal disease on a per-pixel basis.

II. RELATED WORK

A. Periodontal disease detection

Juan et. al used computer vision techniques and incor-
porated an off-the-shelf camera to automatically predict
gingival probe depth using training data with ground truth
measurements [7]. The camera is attached to the probe and
depth predictions are made with reasonable accuracy. To the
best of our knowledge, this remains the only attempt to create
an automated solution to estimate gingival disease using
images and computer vision. This approach however lacked
other key parameters such as inflammation and bleeding
indices, hypervascularization and papillary margin quality
and depends on a clinically invasive procedure to inform
diagnoses.

B. Deep neural networks

Convolutional neural networks (CNNs) are deep neural
network (DNN) architectures that learn to identify features
from images [8]. The classifier learns using backpropagation
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Fig. 1: (a) The data acquisition and labeling process. (b) Autoencoder network consisting of convolutional, maximum pooling,
upsampling, rectified linear units and sigmoid layers. Arrows between non-adjacent layers represent skip connections. The
network takes as input three-channel images of size 480×640×3 pixels and outputs a single-channel segmented image of
size 480×640 pixels. N is the batch size used for one iteration of training.

until the network is trained for the specified task. Maximum
pooling is used for translational invariance. CNNs are highly
effective in identifying features in images with high accuracy,
given enough training data [9] [10].

AutoEncoders (AE) combined with convolutional layers
have been used for segmentation of input images [11].

III. TECHNICAL APPROACH

A. Data collection

Data was collected during a study at the 2015 Kumbh Mela
in Nashik, India from consenting adults (aged 18-90 years)
using ACTEON Soprocare, an FDA-approved oral imag-
ing camera (ACTEON North America, Mount Laurel, New
Jersey, USA). The Massachusetts Institute of Technology
Committee on Humans as Experimental Subjects reviewed
and approved protocol 1603518893 associated with this data.
The venue provided an opportunity to collect medical data
from a diverse group of people. The teeth were illuminated
with light of 405-450 nm wavelength and the correspond-
ing fluorescence captured using the oral imaging device.
The final dataset used for this study comprises 405 color-
augmented intraoral biomarker images from 150 individuals.
The data acquisition process can be seen in Fig. 1.

The oral imaging device captures fluorescence from the
biomarker porphyrin, an indicator of periodontal disease,
and outputs color-augmented white light images. Plaque is
displayed in shades of yellow and orange while gingival
inflammation is displayed in shades of magenta and red [3].

B. Ground truth generation

A graphical interface was developed to display images to
a dentist for annotations (Fig. 2). A dental expert provided
bounding boxes around regions of inflamed gingiva along
with a modified gingival index (MGI) between 0 and 4
(inclusive), for each image [12]. The boxes provided by
the dental professional were representative, not exhaustive,
resulting in some of the inflamed gingiva pixels lying outside

the bounding boxes, which could lead to faulty training. A
final bounding box around the annotated bounding boxes
was calculated, which served to delineate the general area of
gingival inflammation. The pixels inside the bounding box
corresponding to inflamed gingiva (identified using intensity
thresholding) were given a value of 1; rest of the pixels were
given a value of 0. This operation resulted in 405 pairs of
images and corresponding inflammation segmentations.

C. Data Preparation
The image dataset was divided into training and validation

data: 258 images (63.7%) and 147 images (36.3%) respec-
tively. The distribution of the dataset across MGI scores can
be seen in Table I. Sampling with replacement was used to
create training batches, where all values of MGI were equally
represented, thereby preventing bias towards any specific
value. Random vertical flipping was applied to the training
images to induce rotational invariance to gingival positions.
The validation dataset was randomly selected to preserve the
proportion of images with each MGI and to preserve the
variety of tooth types and photographed gingival positions.

D. Classifier model
The deep learning network architecture, shown in Fig.

1b, uses an autoencoder framework combined with convolu-

Fig. 2: Graphical interface used for annotation by dental
professionals.
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Fig. 3: Representative sets of images from the validation dataset. The columns (I-VIII) represent images from different
patients. (a) Intra-oral images used as input to the classifier. (b) Associated ground truth localized labels constructed from
expert bounding boxes and thresholding. (c) Output segmentations from the classifier. (d) Segmentation errors colored by
type of error.

tional layers. The network consists of convolutional layers,
maximum pooling layers, upsampling, rectified linear unit
and final sigmoid activation. The architecture aims to learn
the mapping between the input image and the ground-truth
gingival inflammation segmentation. Residual connections
have been utilized to prevent gradient vanishing and expedite
learning [13]. The classifier takes the color-augmented RGB
images with dimensions of 640×480 pixels as input and
single channel binary image of size 640×480 as the ground
truth. Dice loss was used as the loss function and the
classifier is trained using adaptive gradient descent with mo-
mentum [14]. The classifier was implemented in TensorFlow
and trained using a single NVIDIA GeForce GTX Titan X
GPU [15]. A batch size of 32 was used along with an initial
learning rate of 1× 10−6. The learning rate decreased by a
factor of five every 500 iterations. Training was performed
for 5000 iterations. The trained classifier accepts as input
a color-augmented intraoral image and outputs a pixel-wise
segmentation.

Modified gingival index No. training images No. validation images
1 47 (18.2%) 40 (27.2%)
2 133 (51.5%) 65 (44.2%)
3 61 (23.6%) 28 (19.1%)
4 17 (6.6%) 14 (9.5%)

TABLE I: Distribution of training and validation data. The
modified gingival index values range from 0 (healthy gums)
to 4 (advanced gingivitis with inflammation). No images
were scored 0. Percentages were calculated with respect to
the total number of images in the column’s dataset.

IV. RESULTS AND DISCUSSION

The classifier produces a pixel-wise segmentation of areas
predicted to contain gingival inflammation. Row (c) in Fig.
3 shows the segmentations results for representative images
in the validation set. Row (d) in Fig. 3 shows the errors
for the segmentations in the validation dataset. Fig. 4a
shows the receiver operating characteristic (ROC) curve for
the validation set for pixel-level segmentations. The area
under the ROC curve (AUC) was 0.746, indicating a 0.746
probability that pixels corresponding to inflamed gingiva
were more likely to be included in the segmentations than
pixels corresponding to non-inflamed gingiva. The precision
and recall values are 0.347 and 0.621, respectively (Fig. 4b);
34.7% of all pixels classified as inflammation were actually
inflamed, and 62.1% of all truly inflamed pixels are correctly
classified as inflammation.

The classifier segmentation was validated by three dentists,
and the agreement among the experts and between the
classifier and each expert can be seen in Table II. The AUC
between the classifier and each dentist averages to 0.7372,
indicating that there is a 73.72% chance that the classifier
classifies a pixel that a given dentist considers inflamed as
more likely to be inflamed than a pixel the dentist does not
consider inflamed. Likewise, the AUC between the dentists
pairs averages to 0.7754 (77.54%). The agreement between
the classifier and the dentists is similar, despite being trained
on annotations from a single dentist (dentist C), indicating
that the classifier is able to identify a general representation
of gingivitis.

The trained classifier identified with high accuracy areas
with gingivitis and periodontal diseases in validation images.
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Source 1 Source 2 AUC
Dentist A Dentist B 0.7525
Dentist B Dentist C 0.7893
Dentist C Dentist A 0.7844
Dentist A Classifier 0.7357
Dentist B Classifier 0.7300
Dentist C Classifier 0.7460

TABLE II: Agreement among the dentists and between each
dentist and classifier. Higher AUC indicates better agreement.
AUC: area under the receiver operating characteristic curve.

(a) (b)

Fig. 4: (a) Receiver operating characteristics curve for the
validation dataset. The area under the curve is 0.746. The
black dashed line represents random chance. (b) Precision-
recall curve for the validation dataset. The precision value
for the classifier is 0.347 and the recall value is 0.621.

For example, comparing images in Fig. 3, IId showed that
the segmentation from the classifier IIc successfully matched
the ground truth labels provided by the expert IIb. Similar
results were observed across the majority of other image
pairs we validated. The low rates of false positives predicted
by the classifier in majority of validation images also in-
dicated that it does not segment out gingival inflammation
in healthy tissue. While a low false negative rate indicated
comprehensive recognition of surfaces associated with bona
fide gingival inflammation. An exception was seen in panel
VIIId where we observed errors primarily attributed to false
positive segmentation in potentially healthy tissues.

The observed errors may be attributable to aggressive color
augmentation of non-inflamed tissues by the intraoral camera
for easy visualization vs. accurate quantification and/or local-
ization. To overcome this limitation, we used expert annota-
tions in the form of representative localized bounding boxes
to further validate and the gingival inflammation ground
truth labels. An increased number of representative bounding
boxes, or even full localized expert segmentations, may help
in reducing this bias. The low number of images used to train
the classifier, combined with the widespread poor oral health
of the patient population, resulted in the overfitting of the
classifier to the few examples of certain classes (MGI 4). An
evenly distributed larger dataset should solve this problem.
Similarly, a greater variety in camera angles and positions in
the mouth of photographed gingiva in the expanded dataset
would most likely increase the robustness.

V. CONCLUSION

The paper proposes an automated system that performs
pixel-wise segmentation of dental images and successfully
segments gingival inflammation from healthy gums. This
is the first description, to our knowledge, of segmenting
gingival diseases using oral images. The performance of the
classifier was validated using multiple images, demonstrating
its accuracy and efficacy to distinguish between inflamed
gingiva from health gingiva and works better than random
chance. Our automated system can use intraoral images
in point-of-care settings for early detection of gingival in-
flammation in patients and help prevent severe periodontal
diseases and ultimately loss of tooth.
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