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Artificial intelligence and machine learning in clinical
development: a translational perspective
Pratik Shah1, Francis Kendall1,2, Sean Khozin3, Ryan Goosen4, Jianying Hu5, Jason Laramie6, Michael Ringel4 and Nicholas Schork7

Future of clinical development is on the verge of a major transformation due to convergence of large new digital data sources,
computing power to identify clinically meaningful patterns in the data using efficient artificial intelligence and machine-learning
algorithms, and regulators embracing this change through new collaborations. This perspective summarizes insights, recent
developments, and recommendations for infusing actionable computational evidence into clinical development and health care
from academy, biotechnology industry, nonprofit foundations, regulators, and technology corporations. Analysis and learning from
publically available biomedical and clinical trial data sets, real-world evidence from sensors, and health records by machine-learning
architectures are discussed. Strategies for modernizing the clinical development process by integration of AI- and ML-based digital
methods and secure computing technologies through recently announced regulatory pathways at the United States Food and
Drug Administration are outlined. We conclude by discussing applications and impact of digital algorithmic evidence to improve
medical care for patients.
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INTRODUCTION
Clinical drug development has remained relatively unchanged for
the last 30 years. This is due, in part, to uncertainties in regulatory
requirements, risk aversion, and skepticism about rapidly emer-
ging, yet largely unproven, technologies (such as machine
learning, and wireless health monitoring devices and sensors),
and the lack of relevant actionable biomedical data sources and
advanced analytics to generate hypotheses that could motivate
the development of innovative diagnostics and therapies. Testing
new biomedical treatments for safety and efficacy will also require
new strategies, since it has been shown that existing therapies
often only work for a small number of indicated individuals. The
application of emerging digital technologies, such as next-
generation sequencing, though, have increased both our under-
standing of disease mechanisms in larger pool of patients and the
potential for developing personalized therapies. For example, the
majority of the new molecular entities approved by the U.S. FDA in
recent years were designed to target specific aberrations
implicated in disease initiation and maintenance—a hallmark of
precision medicine—which aims to tailor interventions based on
individual characteristics of patients.1 In this light, an emerging
strategy based on co-developing precision diagnostics and
therapeutic agents as companion diagnostics for example may
produce highly effective drugs with clinical outcomes that greatly
exceed standard therapies.2,3

Another key challenge in the clinical development process is
linked to reporting the results of most conventional clinical trials
of average treatment effects that may not easily translate into
making individualized treatment decisions at the routine point-of-
care.4 Promising approaches to overcoming this challenge are

more streamlined processes, exploiting new digital clinical endpoints
and treatment response biomarkers amenable to close and efficient
monitoring (such as circulating tumor DNA), improve safety and
efficacy while reducing toxicity and adverse events and greater
insights into the patient journey via sensors, and low cost imaging.5–8

Securing, standardizing, and enhancing routinely collected EHR
data as a source of credible medical evidence based on RWD can
facilitate the organization of clinical trials at the point-of-care and
should serve to improve the clinical development process.9

Machine learning and computer vision have enhanced many
aspects of human visual perception to identify clinically mean-
ingful patterns in, e.g., imaging data,10 and neural networks are
been used for variety of tasks ranging from medical image
segmentation, generation, classification, and prediction of clinical
data sets.11 Broadly academic research labs, biotechnology
corporations, and technology companies have been exploring
the use of AI and ML in three key areas:

1. machine-based learning to predict pharmaceutical proper-
ties of molecular compounds and targets for drug
discovery;12,13

2. using pattern recognition and segmentation techniques on
medical images (from, e.g., retinal scans, pathology slides
and body surfaces, bones and internal organs) to enable
faster diagnoses and tracking of disease progression;14,15

and generative algorithms for computational augmentation
of existing clinical and imaging data sets;16

3. developing deep-learning techniques on multimodal data
sources such as combining genomic and clinical data to
detect new predictive models.17,18
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Despite these propositions for the use of ML to accelerate
medical research, very few successful use cases have emerged.
These limited successes have been attributed to, among other
things, insufficient time elapsing since the introduction of relevant
technologies and deficiency of current computer science deep
learning and related ML models to generalize more complex and
realistic medical data sets and tasks.19,20 Other important factors
that impede the adoption of AI/ML techniques in therapeutic
development include the paucity of large numbers of high-quality
labeled data, nascent regulations, and ethical and legal concerns
about data sharing. Alternative learning systems that leverage
human brain and its neocortex and learn from fewer examples
have been proposed as alternatives to deep learning, but have not
been widely adopted.21 Recently, perspectives and commentaries
highlighting applications of DNN to imaging data sets, pharma-
ceutical properties of compounds, clinical diagnoses and geno-
mics, computer vision applications for medical imaging, and
applications of Natural Language Processing to EHR have been
published.22,23 These predominantly focused on data in primary
care or hospital ecosystem and early drug discovery applications,
and did not describe use cases and regulatory framework derived
from a multi-stakeholder perspective for successful embedding of
AI and ML and RWE into the process of clinical development
outlined in this perspective.
From March 2017 to December 2018, a series of six broad, cross-

institutional workshops were convened at The MIT Media Lab to
discuss the current state of AI and ML and RWE usage in clinical
development opportunities, challenges, and ways of addressing
challenges. Participation was designed to be multidisciplinary and
multi-stakeholder, involving leading researchers from academic
institutions, leaders from biopharma firms, foundations technol-
ogy corporations, and regulators to engender broad outlook and
cross-functional perspectives. Each two-part workshop was
structured as follows: a series of talks outlining current challenges
and opportunities and regulatory insights for introducing AI and
ML in the clinical development process either as researchers or
adopters, followed by a brainstorming session with breakaway
groups focusing on specific themes. This manuscript, a consoli-
dated viewpoint on infusion of AI and ML in clinical development,
is one of the key outputs of the workshop. We focus on three key
themes discussed in the workshops related to development of
next-generation medicines by adoption of digital evidence
generated by AI and ML: (1) validation and modernizing the
clinical trials process, (2) strategies for rational use of AI- and ML-
driven learning from real-world data and evidence and, (3)
required regulatory oversight for integration, explanation, and de-
risking of AI/ML digital analytics in medical care to patients. A
glossary is provided as Supplementary Material for explanation of
key terms.

DISCUSSION
MIT Workshops discussed new pathways set up by regulatory
agencies for evaluation and adoption of AI and ML in clinical
development. For example, in 2016, the 21st Century Cures Act
was signed into law, a significant bipartisan legislative achieve-
ment aimed at accelerating the discovery, development, and
delivery of new cures and treatments was highlighted. FDA’s
current strategic policy places emphasis on leveraging innovation,
advancing digital health technologies, and developing next-
generation analytical approaches to improve health care, broaden
access, and advance public health goals. SaMD and digital health
pathways for regulatory approvals for AI, ML, and computer vision
algorithms have been set up at FDA.24,25 To date, FDA has cleared
or approved several AI/ML-based SaMD. Typically, these have only
included algorithms that are locked prior to marketing. For
example, FDA has approved diagnostics company IDx’s ML-based
software system for autonomous detection of diabetic

retinopathy.26 In addition, Viz.ai’s software, which uses a ML
techniques to scan Computed Tomography images for indicators
associated with stroke, also obtained the regulatory approval.27

Other software systems listed included automated detection of
atrial fibrillation and coronary calcification scores.28,29 The FDA is
also considering the ability of AI/ML-based SaMD for continuously
learning and adaptive algorithms that have the potential to adapt
and optimize device performance in real time to improve health
care for patients in its regulatory framework. More broadly, FDA is
using significance of information provided by SaMD to health care
decision such as treat or diagnose, drive clinical or inform clinical
management as key determinations for regulatory strategies.
Pharmaceutical, biotechnology, and startup community participat-
ing in the workshops has recognized the potential of AI and ML in
the development of personalized medicines and generating
evidence motivating new products (summarized in Box 1). As
examples, Johnson & Johnson Innovation’s life sciences “JLABS”
newco incubator currently includes ML startups, such as Analytics

Box 1. Key Recommendations, action items, and challenges

Biotechnology industry

● Maximize AI and ML opportunities by focusing on data aggregation and
easier access to data within and across pharma, biotech, and infotech
companies.

● Shared data in a noncompetitive manner (such as, e.g., TransCelerate
placebo data, DREAM challenge and IBM, Project DataSphere) with multiple
parties in the health care ecosystem, including technologists and academics
to generate insights faster and collaboratively.40–43

● Embed computer science experts in relevant initiatives in order to build
core capabilities and interdisciplinary teams, as well as leverage advisors
from academic research groups.

Academy

● New research, and academic and education departments focusing on
training next generation of AI and ML professionals with experience in
learning from clinical data.

● Develop ML and AI algorithms capable of continuous learning from
multimodal and sparse input data usually found in clinical development.

● Host high value data sets in a secure public–private–government sandbox
to engender research to infuse AI and ML in clinical development and
design new digital medicine tools with an eye toward facilitating
collaborations.44

● Develop AI ML toolboxes that are publically available for use by multiple
stakeholders.45

Regulatory agencies

● Consider AI and ML techniques as effective tools and aids to drug
development.46

● Evaluate the use of real-world evidence, generated by data outside
traditional clinical trials from sources such as electronic health records
and digital health devices, to support new drugs and health technologies.47

● Expand and promote internal innovations groups to engage actively with
academic institutions, other government agencies, and technology
companies to improve the clinical development process.48

Technology corporations

● Promote and maintain collaborations with academic groups developing AI
and ML tools as such collaborations can also be used to shape the creation
of a “future” workforce that can have a bigger impact on health care.

● Leverage expertise across the whole spectrum of computing: from
hardware designs, including quantum computing, to security, platforms,
and services, in order to develop platforms for efficient and agile
development.

Challenges and considerations

● Limitations of current computer science deep learning models to generalize
to complex medical data sets and tasks.

● Necessities of high volumes of labeled data sets for training deep learning
algorithms

● Strategies and regulatory framework for dealing with relevant ethics issues
(e.g., patient privacy, retaining anonymity, securing data)45 and de-risk use
of AI- and ML-based clinical prediction and decision support in health
care.49
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4 Life, A2A Pharmaceuticals, Envisagenics, among others. Precision
medicine company GNS Healthcare and Genentech aim to
collaboratively discover and validate new oncology drugs and
patient response markers. Pfizer and Novartis are each working
with IBM Watson Health to facilitate immuno-oncological research
and development. Glaxosmithkline recently announced the
creation of “Accelerating Therapeutics for Opportunities in
Medicine (ATOM)” Consortium to accelerate drug discovery
process using ML tools.30 These early initiatives are either set up

as in-house research groups or as public–private partnerships to
engender cross-functional teams.
Discussions also focused on RWD-based simulations are now

accepted as a reasonable way to inform clinical study design,
modeling the impact of different study eligibility criteria, the
timing of endpoint assessments, and study timelines at the FDA.31

Treatment and regulatory decisions are based largely on data
obtained from clinical trials and observational real-world data, and
evidence from hospitals, EHR, and primary care are considered
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Fig. 1 Use cases of artificial intelligence, computer vision, and machine learning in clinical development
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ancillary. An approach for evaluating RWE for clinical development
and regulatory decisions would have the advantage of getting the
medicine to the patient more quickly, with a better and fuller
understanding of how effective and safe the medicines are in real-
world settings. RWD can also inform study site selection, as well as
identify patients potentially eligible for trials. Simulation of study
control arms, potentially replacing the need to randomize a
patient to a control arm in some scenarios, is another successful
use of RWD. Authors note emergence and impact of analytics of
RWD and RWE in academic biomedical science and health care
delivery. For example, large “data lakes” have been created by
aggregating information from hospital EHR, creating an opportu-
nity for exploration via AI and ML approaches to identify clinically
meaningful patterns.32–34 These data lakes can be used to and
ability to track patients longitudinally. By using RWD and tracking
patients longitudinally via EHR for example, necessity for certain
traditionally conducted late-phase trials could be reduced or
eliminated altogether: one would provide a drug (after it has
proven safe and efficacious in phase I and II trials) to patients and
keep track of their experience.
Another theme at workshops focused on novel trials designs

such as “basket,” “umbrella,” and many adaptive designs have
been encouraged by regulatory agencies and can exploit
emerging AI and ML techniques. These designs can enroll patients
in a trial, profile them (e.g., using DNA sequencing, proteomics,
metabolomics, etc.), and then use RWD for matching drugs
considered in the trial to the pathologies identified from the
profiling. Strategies for matching drugs to patient profiles in these
studies can be based on AI and ML analysis of large relevant data
sets. AI and ML can further be used to support an electronic
version of study data monitoring, thereby ensuring that data are
correct and the patients are safe; thus reducing the need for
expensive on-site study monitoring. Furthermore, EHR data can be
combined with other RWD types, such as genomics and patient-
reported concerns, can be mined with AI and ML techniques to
create a more comprehensive picture for drug and biomarker
discovery. As methods for each of these tasks are determined and
refined, computational solutions, including AI and ML, can be
implemented to reliably replicate clinical trial activities at scale.
These types of clinical trials—which ultimately test intervention
“algorithms” such as drug–patient profile matching schemes—are
likely to become more pronounced and prevalent in the future,
and could be greatly facilitated by leveraging clinical outcomes
monitoring and RWD collection. This interaction could also lead to
the development of “Clinical Decision Support” tools that provide
insight into optimal ways of treating patients. Experience with
these tools could lead to further refinements, ultimately providing
continuous feedback on their effectiveness.
Recent research at the intersection of computer science and

medicine, proactive regulatory landscape, and availability of
large data sets offers use cases and promise of testing and
delivering faster cures to patients by leveraging sophisticated AI
and ML methods (Fig. 1). This perspective aims to engage and
inform researchers from fields, such as computer science,
biology, medicine, engineering, biostatistics, and policy makers,
with value of emerging technologies of AI and ML in solving key
challenges facing modernization of the current clinical devel-
opment process. Accordingly, Box 1 lists specific call-to-action,
use cases, and considerations for different stakeholders across
biotechnology and technology companies, foundations, regula-
tors, and academic institutions discussed in a series of work-
shops. The authors also note that collaborations between
engineering, medical imaging, machine learning, secure com-
puting, and medicine have recently been fostered at various
academic institutions across United States showing commit-
ment toward such efforts. For example, MIT Media Lab and
United States FDA signed a Memorandum of Understanding
“Health 0.0” to engender AI and ML research for computational

medicine and clinical development and accompanying regula-
tory framework to improve health outcomes for patients. Life
sciences, biotechnology, foundations, universities, and patient
advocacy groups are parts of this ecosystem. Partnerships at MIT
with IBM, Abdul Latif Jameel Foundation Clinic, and Stephen A.
Schwarzman College of Computing have been launched to
support machine-learning research for health care needs.35,36

Partnership in AI-assisted care at Stanford, Center for Artificial
Intelligence in Diagnostic Medicine at University of California,
Irvine and Center for Clinical Data Sciences at Massachusetts
General Hospital and Brigham and Womens Hospital have
joined the ecosystem.37–39 A number of key recommendations
and successful use cases and value and challenges facing AI and
ML adoption in clinical development outlined in this perspective
(summarized in Box I) can thus be implemented for taking
advantage of digital algorithmic evidence to improve medical
care for patients.
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Glossary 

Artificial Intelligence: AI, An area of computer science that deals with giving machines 
 the ability to seem like they have human intelligence. 

Clinical Development: CD, is a blanket term used to define the entire process of 
 bringing a  new drug or device to the market. It 
 includes drug discovery/product development, pre-
 clinical research (microorganisms/animals) and clinical 
 trials (on humans). 

Deep Neural Network: DNN, is an artificial neural network with multiple layers 
 between the input and output layers. The DNN finds the correct 
 mathematical manipulation to turn the input into the output, 
 whether it be a linear relationship or a non-linear 
 relationship. 

Electronic Health Record: EHR, is a longitudinal electronic record of patient health  
 information generated by one or more encounters in any care 
 delivery setting. Included in this information are patient 
 demographics, progress notes, problems, medications, and vital 
 signs, past medical history, immunizations, laboratory data and 
 radiology reports.  

Food & Drug Administration: FDA 

Machine Learning: ML, is the scientific study of algorithms and statistical models that 
 computer systems use in order to perform a specific task 
 effectively without using explicit instructions, relying on 
 patterns and inference instead. It is seen as a subset of AI. 

Real World Data: RWD, are the data relating to patient health status and/or the delivery 
 of health care routinely collected from a variety of sources. 
 RWD can come from a number of sources, for example: EHRs, 
 Claims and billing activities, Product and disease registries, 
 Patient-generated data including in home-use settings, Data 
 gathered from other sources that can inform on health status, 
 such as mobile devices 

Real World Evidence: RWE, is the clinical evidence regarding the usage and potential   
 benefits or risks of a medical product derived from analysis of 
 RWD 

Software as a Medical Device: SaMD, software intended to be used for one or more 
 medical purposes  that perform these purposes without being 
 part of a hardware medical device. 
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