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Highlights
Suboptimal patient selection and
recruiting techniques, paired with the in-
ability to monitor and coach patients ef-
fectively during clinical trials, are two of
themain causes for high trial failure rates.

High failure rates of clinical trials contrib-
ute substantially to the inefficiency of the
drug development cycle, in other words
the trend that fewer new drugs reach
the market despite increasing pharma
Clinical trials consume the latter half of the 10 to 15 year, 1.5–2.0 billion USD, de-
velopment cycle for bringing a single new drug to market. Hence, a failed trial
sinks not only the investment into the trial itself but also the preclinical develop-
ment costs, rendering the loss per failed clinical trial at 800 million to 1.4 billion
USD. Suboptimal patient cohort selection and recruiting techniques, paired
with the inability to monitor patients effectively during trials, are two of the
main causes for high trial failure rates: only one of 10 compounds entering a
clinical trial reaches the market. We explain how recent advances in artificial
intelligence (AI) can be used to reshape key steps of clinical trial design towards
increasing trial success rates.
R&D investment. This trend has been
observed for decades and is ongoing.

AI techniques have advanced to a level
of maturity that allows them to be
employed under real-life conditions to
assist human decision-makers.

AI has the potential to transform key
steps of clinical trial design from study
preparation to execution towards im-
proving trial success rates, thus lowering
the pharma R&D burden.
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Artificial Intelligence Can Turn Eroom’s Law into Moore’s Law
It takes on average 10–15 years and USD 1.5–2.0 billion to bring a new drug to market. Approx-
imately half of this time and investment is consumed during the clinical trial phases of the drug de-
velopment cycle. The remaining 50% of R&D expenditure covers preclinical compound discovery
and testing, as well as regulatory processes (Figure 1). Although pharma and biotechnology com-
panies have continuously increased R&D investment for decades, the number of new drugs
gaining regulatory approval per billion USD spent has halved approximately every 9 years [1]. Re-
versingMoore’s law (see Glossary) from the world of semiconductor technology, this trend has
been termed Eroom’s Law. It is ongoingi [2] and poses a severe threat to the existing clinical de-
velopment business model: in the post-blockbuster drugs era a lack of go-to-market efficiency
of that magnitude is not sustainable. One of the main stumbling blocks in the drug development
pipeline is the high failure rate of clinical trials. Less than one third of all Phase II compounds ad-
vance to Phase III [3]. More than one third of all Phase III compounds fail to advance to approval
[4]. Because these crucial checkpoints do not occur until far into the second half of the R&D cycle –
with the most complex Phase III trials carrying ~60% of the overall trial costs (Figure 1) – the
resulting loss per failed clinical trial lies in the order of 0.8–1.4 billion USDii, thus constituting a sig-
nificant write-off of the total R&D investment.

Two of the key factors causing a clinical trial to be unsuccessful are patient cohort selection and
recruiting mechanisms which fail to bring the best suited patients to a trial in time, as well as a lack
of technical infrastructure to cope with the complexity of running a trial – especially in its later
phases – in the absence of reliable and efficient adherence control, patient monitoring, and
clinical endpoint detection systems. AI (Box 1) can help to overcome these shortcomings of
current clinical trial design. Machine learning (ML), and deep learning (DL) in particular (Box 2),
are able to automatically find patterns of meaning in large datasets such as text, speech, or im-
ages. Natural language processing (NLP) can understand and correlate content in written or spo-
ken language, and human–machine interfaces (HMIs) (Box 2) allow natural exchange of
information between computers and humans. These capabilities can be used for correlating
large and diverse datasets such as electronic health records (EHRs), medical literature, and trial
databases for improved patient–trial matching and recruitment before a trial starts, as well as
for monitoring patients automatically and continuously during the trial, thereby allowing improved
adherence control and yielding more reliable and efficient endpoint assessment. In the following
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Figure 1. The Pharma Drug Development Cycle. It takes up to 15 years and an average total R&D expenditure of 1.5–2 billion (B) USD to bring a single new drug to
market. About half of this investment is spent on clinical trials, with Phase III trials being the most complex and most expensive. Probabilities of success for compounds to
proceed through the clinical trial stages vary from phase to phase, and lead to a situation where only one of 10 compounds entering clinical trials advances to FDA approval.
High clinical trial failure rates are one major cause for the prevailing inefficiency of the drug development cycle.
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sections we highlight aspects of clinical trial design with immediate potential entry points for AI,
and explain specific AI techniques of interest and how their application will improve trial
performance (Figure 2, Key Figure).

Patient Selection
Every clinical trial poses individual requirements on participating patients with regards to eligibility,
suitability, motivation, and empowerment to enrol. The medical history of a specific patient might
render them ineligible. An eligible patient might not be at the stage of the disease, or belong to a
specific sub-phenotype, that is targeted by the drug to be tested, thusmaking that patient unsuit-
able. Eligible and suitable patients might not be properly incentivized to participate, and, even if
they are, they might not be aware of a matching trial or find the recruitment process too complex
and cumbersome to navigate. Moving enough patients through these bottlenecks under tight re-
cruitment timelines constitutes a major challenge and is in fact the number one cause for trial de-
lays: 86%of all trials do notmeet enrolment timelines, and close to one third of all Phase III trials fail
owing to enrolment problemsiii. Patient recruitment takes up one third of the overall trial durationiv.
For example, Phase III trials carry 60% of the total costs for moving a drug through all trial phases
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Glossary
Absence seizure: an epileptic seizure
episode that the affected patient is not
aware of.
Blockbuster drug: a drug that creates
in excess of $1B in annual sales.
Blockchain technology: a blockchain
is a digital list – often referred to as digital
ledger – of permanent data records
which have been uploaded sequentially
in form of ‘blocks’. Each time a new
block is added to this ‘chain’ a
cryptographic signature is createdwhich
connects the newly uploaded block with
the latest existing block in the ledger.
This process ensures that every change
to the blockchain is self-validated and
that a record of the change is
permanently stored in the blockchain,
without a need for validation through a
third party. The blockchain itself is
decentralized and self-governing,

Box 1. The Evolution of AI

The use of AI inmedicine dates back to the early 1970swhen expert systems such asMYCINwere first introduced to provide
diagnostic decision support [48]. However, early medical AI systems relied heavily on medical domain experts to train com-
puters by encoding clinical knowledge as logic rules for specific clinical scenarios. Such systems suffered from the limitation
that they were labor-intensive and time-consuming to construct, and once built they were rigid and difficult to update [49].
More advanced ML systems that are capable of training themselves to learn these rules by identifying and weighing relevant
features from data such as unstructured text, medical images, and EHRs emerged in the 90s and 2000s, but were relatively
slow to be adopted by the medical field, largely because of the lack of widely available data and the fact that the early
methods required intense feature-engineering efforts involving serious commitments from medical domain experts [50].

This situation has changed dramatically recently because of two factors. First, the field of AI itself went through transfor-
mational advances, particularly in DL and related MLmethods, enabled by hardware improvements and very large training
datasets [21,51]. Second, medical data became increasingly available in digital form thanks to new technology advances
as well as public policy efforts such as the Electronic RecordsMeaningful Use Programs in the USAxxxix. Recent years have
witnessed a surge in efforts as well as early proof-of-concept successes of AI in medicine, starting from medical imaging
for detecting diabetic retinopathy [52] and skin cancer [53], to the use of EHR data to predict important clinical parameters
ranging from disease onset to mortality [54]. The field of biomedicine has also benefited from this surge in AI methods at
many levels, from sophisticated natural language processing (NLP) searches of the biomedical literature [55], to cancer
sub-phenotyping using DL [56], to predictions of gene targets of microRNAs [57], drug–target interactions, and drug re-
positioning hypotheses [58].

Box 2. Different Methods Used in AI

Artificial Intelligence (AI): machine simulation of human intelligence processes including learning, reasoning, and self-
correctionxl. The ultimate goal of AI is to build machines that can perceive the world and make decisions in the same
way as humans do.

Association rulemining:ML algorithms for discovering interesting relations between variables in large databases to help
a machine to mimic the extraction and abstract association capabilities of the human brain from new uncategorized data.

Brain–machine interface (BMI): a direct communication pathway between an enhanced or wired brain and an external
device. Also referred to as a brain–computer interface (BCI), amind–machine interface (MMI), or a direct neural interface (DNI).

Deep learning (DL): a class of ML methods based on artificial neural networks, inspired by information processing and
distributed communication nodes in biological systems, that use multiple layers to progressively extract higher level fea-
tures from raw inputxli. The 'deep' in 'deep learning' refers to the number of layers through which the data is transformed.

Deep reinforcement learning (DRL): reinforcement learning (RL) is an area of ML that is concerned with building soft-
ware agents that can take actions in an environment so as to maximize some notion of cumulative reward. DRL combines
DL and RL principles to create efficient algorithms to achieve this task.

Human–machine interface (HMI): a direct communication pathway between a human and a device. For example, an
artificial system capable of automatically understanding and responding to spoken or written human language constitutes
a human–machine Interface.

Machine learning (ML): the scientific study of algorithms that build a mathematical model of sample data to make
predictions or decisions without being explicitly programmed to perform the taskxli. ML is often considered to be a branch
of AI.

Natural language processing (NLP): a subfield of AI concerned with the interactions between computers and human
(natural) languages, in particular how to program computers to process and analyze large amounts of natural language
data. NLP draws from many disciplines including computer science and computational linguistics.

Optical character recognition (OCR): a field of research in AI, pattern recognition, and computational vision aimed at
the electronic conversion of images of typed, handwritten, or printed text into machine-encoded text, whether from a
scanned document, a photo of a document, a scene-photo, or from subtitle text superimposed on an image.

Trends in Pharmacological Sciences

Trends in Pharmacolog
allowing anyone with valid access rights
to use it.
Clinical trial endpoint: a clinical trial
attempts to assess the potential impact
because they require the largest patient cohorts. A 32% failure rate because of patient recruit-
ment problemsv in Phase III trials illustrates one of the most severe shortcomings of state-of-
the-art clinical trial design: those trials with the highest patient demand suffer most from inefficient
of a medical intervention on the
occurrence of a disease, as for example
assessed by a specific symptom. The
appearance of such a symptom in a
patient during the course of the trial
marks the clinical endpoint for that
patient.
Explainability of AI: the ability to
explain the inner workings of AI
algorithms and the outputs they produce.
Exposome: the impact on an organism
of all environmental factors to which it
has been exposed to during its lifetime.
Internet of things (IoT): a state in
which real-world devices are
interconnected such that information
and data can flow between them.
Moore’s law: in 1965, Gordon Moore
postulated that the power of computing
would increase while its relative cost
would decrease at an exponential pace.
This trend held for decades and became
known as ‘Moore’s Law’.
Overfitting of ML models: overfitting
describes the state of amachine learning
(ML) model that has overly precisely
learned the distinct features of the
training dataset such that it can no
longer generalize well to datasets to
which it has never been exposed to
before.
Reasoning: a reasoning system
automatically draws conclusions from
data and knowledge.
Time-series data: data that capture
the value of a single or multiple
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measured parameters over time at
defined points in time.
Wearable: a device that can execute a
measurement or data-processing task,
and that is fully functional while attached
to the human body directly or indirectly
through clothing, and that has no
hardwired connection to any other
non-wearable device.

Trends in Pharmacological Sciences
patient recruitment techniques. AI- and ML-driven systems can help to improve patient cohort
composition and provide assistance with patient recruitment (Figure 2).

Cohort Composition
Clinical trials are usually not designed to demonstrate the effectiveness of a treatment in a random
sample of the general population, but instead aim to prospectively select a subset of the popula-
tion in which the effect of the drug, if there is one, can more readily be demonstrated, a strategy
referred to as 'clinical trial enrichment' vi. If a patient is a priori not part of the suitable subset, then
their participation in the trial will automatically decrease the observed efficacy of the drug being
tested. Suitability may not be confused with the degree of treatment success or absence thereof
during the trial: it denotes a condition that does not render it outright impossible or highly unlikely
for participating patients to respond to the tested drug. Recruiting a high number of suitable
patients does not guarantee success of a trial, but enrolling unsuitable patients increases the
likelihood of its failurevii.

In an ideal world the assessment of suitability would use patient-specific diagnostic genome-to-
exposome profiling [5] to determine whether biomarkers which the drug targets are sufficiently
strongly represented in the patient profile or not. Although trials which could benefit from such
an approach form a relatively small subset of all trials, they also tend to be the most expensive tri-
als – especially when medical imaging techniques are used. Hence, although in practice there
may not be a comprehensive 'omic profile', and effective biomarkers may need to be identified
for the majority of therapies under clinical development, biomarker testing should still be consid-
ered whenever applicable. Sophisticated analytics methods are necessary to combine omic data
with electronic medical record (EMR) and other patient data, scattered among different locations,
owners, and formats – from handwritten paper copies to digital medical imagery – to surface bio-
markers that lead to endpoints that can be more efficiently measured, and thereby identify and
characterize appropriate patient subpopulations. This presents a unique opportunity for NLP
and computer vision algorithms such as optical character recognition (OCR) (Box 2) to automate
the reading and compiling of this evidence. Moreover, treating data from different sources and
formats as a single coherent dataset for the purpose of its comprehensive analysis is especially
challenging in the case of EMR data owing to their volume, velocity, veracity, and variety. The
data source-agnostic nature of AI models makes them a unique tool for EMR data harmonization
which is key to designing tools for clinical trial enrichment and biomarker discovery. However,
care must be taken to reduce overfitting of ML models as a result of class-imbalance in the
training data.

Preclinical compound discovery, compound-target testing, and defining lead compounds for
clinical trials can be assisted by using generative and prediction-based AI, ML, and reasoning
techniques [6–8]. For example, a broader and more efficient search for correlations between in-
dications and biomarkers than conventional discovery techniques has been reported [8]. This
may allow lead candidates to be chosen that have a higher chance of success during clinical trials,
and the elimination of those with a higher likelihood of failing before they enter the clinical phase.

AI models and methods can also be used to enhance patient cohort selection through one or
more of the following means identified by the Food and Drug administration (FDA): (i) by reducing
population heterogeneity, (ii) by choosing patients who are more likely to have a measurable clin-
ical endpoint, also called 'prognostic enrichment', and (iii) by identifying a population more capa-
ble of responding to a treatment, also termed 'predictive enrichment' vi (Figure 2). Electronic
phenotyping is a well-established discipline within health informatics that focuses on reducing
population heterogeneity, namely the process of identifying patients with specific characteristics
580 Trends in Pharmacological Sciences, August 2019, Vol. 40, No. 8
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of interest. The characteristics can be as simple as patients with type 2 diabetes, or as complex
as patients with stage II prostate cancer and urinary urgency without evidence of urinary tract
infection. The task of electronic phenotyping is far more challenging than a simple code search,
and requires sophisticated methods to account for heterogeneity among patient records, across
multiple data types, and to leverage complex representations of clinical domain knowledge.
Although early methods relying on hand-crafted rules were effective for simple cases, they proved
to be insufficient for more complex and more nuanced cases. In recent years there have been
increasing efforts to design a diverse range of ML methods, ranging from NLP to association
rule mining to DL (Box 2), that have shown great progress towards being able to handle complex
real-world situations [9].

Although electronic phenotyping can be leveraged to reduce patient population heterogeneity,
it is not designed to achieve prognostic or predictive enrichment.ML methods are increasingly
being deployed for prognostic enrichment for neurological diseases where key biomarkers,
which are typically expensive or invasive to measure, are approximated by non-linear combina-
tions of multiple cheap and non-invasive measures which provide similar prognostic informa-
tion [10,11]. Predictive enrichment requires more complex models that are necessary to
characterize and assess disease progression. The Coalition Against Major Diseases (CAMD)
recently led a process that successfully advanced a clinical trial simulation (CTS) tool for
Alzheimer’s disease (AD) through the formal regulatory review process at the FDA and the
European Medicines Agency. The CTS tool includes computational components for modeling
drug, disease, and progression of mild cognitive impairment (MCI) and early AD that can
be used for model-based clinical trial design [12]. Expanding on this effort, ML methods for
disease progression modeling are being developed to provide increasingly accurate and
nuanced understanding and characterization of complexity and heterogeneity of many
diseases, particularly those such as AD where disease-modifying drugs are not yet available
[13–17].

Assistance in Recruitment
The complexity of trial eligibility criteria in terms of number andmedical jargon generally makes it
challenging for a patient to comprehend and assess their own eligibility. Manually extracting
meaningful information from this large and unstructured data-source is a significant task that
imposes a heavy processing burden on doctors and patients alike. Nonetheless, it is this
step that largely defines whether a patient is deemed suitable and eligible to participate in a
study, and also whether the recruiting site and the patient become aware of each other. Several
AI techniques can offer viable assistance with automatically finding the needles in the EMR
haystack: NLP [18] can be used to comprehend written and spoken language from a variety
of structured and unstructured data types. A detailed summary of NLP techniques applicable
to clinical trial design is provided in a recent review by Fogel [19]. Reasoning [20] techniques
allow content to be digested into actionable recommendations for the human decision-
maker. ML [21] and in particular deep reinforcement learning (Box 2) empowers systems to
learn and integrate feedback on the quality of their analytic output into adapted underlying
algorithms. Assistive systems using these AI techniques or subsets thereof can be used to au-
tomatically analyze EMR and clinical trial eligibility databases, find matches between specific
patients and recruiting trials, and recommend these matches to doctors and patients
(Figure 2). Such AI-based clinical trial matching systems have successfully been demonstrated
and have proved their value in real-life use cases [22]viii. Because of the AI nature of these sys-
tems, any added future functionality and improved performance predominantly will depend on
the quality and amount of data which are accessible for analytical model development and
pilot-study field validation work.
Trends in Pharmacological Sciences, August 2019, Vol. 40, No. 8 581



Key Figure

Artificial Intelligence (AI) for Clinical Trial Design

AI for clinical trial design: from methodology to improved outcomes
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AI and ML techniques such as NLP and OCR have also been proposed to proactively mine pub-
licly available web content such as, for example, digital trial databases, trial announcements, and
social media to automatically identify potential matches between trials of relevance and specific
patients. By assisting patients in their conventional manual web search, such a system could
make patients aware of trials of interest much faster and allow them to proactively engage with
clinicians for further assessment of eligibility and suitabilityix. Indeed, the first enrolment plans
employing a social media component have successfully been demonstratedx. We expect the in-
tegration of AI will improve the reach, efficiency, and thus the impact of such digital enrolment
plans substantially in the future.

Challenges
The digitalization and accessibility of EMR data that are used extensively by AI methods are not
trivial. Both tasks are challenging for contrary reasons: on the one hand a lack of regulatory frame-
works on data collection causes EMR formats to differ widely, to be incompatible with each other
or not digital at all, and to reside in a decentralized ecosystemwithout established data exchange
or access gateways. On the other hand, a strongly regulated legal environment strictly limits third-
party access to patient data and even makes it difficult for patients themselves to access their
own data. This so-called ‘EMR interoperability dilemma’ is being recognized as major hurdle to
making healthcare systems more efficient, and substantial investments are being made by gov-
ernments and medical institutions towards overcoming this hurdle [23]. In parallel, legal frame-
works such as, for example, the US Health Insurance Portability and Accountability Act (HIPAA)
and the EU General Data Protection Regulation (GDPR) continue to evolve as governing and
protecting sensitive health data becomes an increasingly complex endeavor in the growing net-
work of devices, data owners, and service providers [24,25]. Further, exactly as with EMRmining,
for clinical trial matching the legal aspects of data privacy and security as well as a sufficient de-
gree of explainability of AI models need to be addressed to ensure that AI-based systems
are operable and gain regulatory approval.

Patient Monitoring
Recruiting the right patients into a clinical trial is a massive investment of both time and funding.
The return on this investment can only be realized through successful completion of the trial.
Hence, it is imperative that patients stay in the trial, adhere to trial procedures and rules through-
out the trial, and that all data-points for monitoring the impact of the tested drug are collected ef-
ficiently and reliably. Only 15% of clinical trials do not experience patient dropout, and the average
dropout rate across clinical trials is 30%iii. Dropouts caused by a lack of adherence to trial proto-
cols require additional recruiting efforts, which lead to trial delays and substantial additional costs.
A linear increase of the non-adherence rate in a trial leads to an exponential increase in additional
patients required to maintain the statistical power of the outcomes. For example, a study in which
half of the patients are non-adherent means an additional 200% of patients need to be recruited
to keep the statistical power of the results stablexi. Improved patient monitoring and coaching
methods during ongoing trials can be used to lower the adherence burden, make endpoint
detection more efficient, and thus reduce dropout and non-adherence ratesxii. AI techniques
Figure 2. The schematic visualizes the major ways to infuse AI into the clinical trial design pipeline. The three core design themes – cohort composition, patient recruitment,
and patient monitoring (top row) – are based on patient features regarding suitability, eligibility, enrolment empowerment, and motivation, as well as trial features including
endpoint detection, adherence control, and patient retention (second row). A variety of designmethodologies (third row) are used to implement target functionalities (fourth
row). These functionalities are enabled through individual combinations of the three main AI technologies: machine/deep learning, reasoning, and human–machine
interfaces (fifth row) which each analyzes a specific set of patient- and functionality-specific data sources (sixth row). The relative improvement brought about by such
implementations on the study outcome is indicated by the length of the horizontal lines in the color bar code underneath the main outcome aspects (seventh row).
Every AI-based study design application is directly dependent on the quality and amount of data it can tap into, and hence faces the same fundamental challenges
(bottom row). Abbreviation: EMR, electronic medical record.
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in combination with wearable technology offer new approaches to developing such power-
efficient, mobile, real-time, and personalized patient monitoring systems. We review some
examples in the sections below.

Patient Adherence Control, Endpoint Detection, and Retention
To comply with adherence criteria, patients are required to keep detailed records of their medica-
tion intake and of a variety of other data-points related to their bodily functions, response to med-
ication, and daily protocols. This can be an overwhelming and cumbersome task, leading to on
average 40% of patients becoming non-adherent after 150 days into a clinical trial [26]. Wearable
sensors and video monitoring can be used to automatically and continuously collect patient data,
thereby relieving the patient of this task. ML and particularly DL models can then be used to an-
alyze such data in real-time for detecting and logging events of relevance (Figure 2). This ap-
proach allows disease diaries to be generated which – because the underlying analytical DL
models are periodically retrained with updated measurement data – evolve to be patient-
specific and adaptive to any changes in disease expression and patient behavior. Such disease
diaries may serve as evidence for adherence or lack thereof and – asminimal or nomanual patient
input is required – will also collect data-points for endpoint detection more reliably and efficiently
than current patient-driven self-monitoring methods. AI also has an important role to play in
image-based endpoint detection – a task that is currently addressed manually at reading centers.
ML technologies have been proposedxiii [27] – and recently approved [28,29] – for screening
applications for the rapid detection of diseases from medical images. Complementing this with
algorithms that quantify pathological conditions [30–32] will reduce the cost associated with
image-based studies by circumventing manual processing.

AI and ML methods may also be used to dynamically predict the risk of dropout for a specific pa-
tient, in other words to detect the onset of patient behavior that suggests the patient might be
experiencing issues with adhering to the study protocol (Figure 2). One such example described
the use of deep reinforcement learning algorithms by Yauney and Shah [33] to determine the
fewest, smallest doses that could still shrink brain tumors, while reducing toxicity associated
with chemotherapy dosing regimens. Powered by a 'self-learning' ML technique, the system
looks at treatment regimens currently in use, and iteratively adjusts the doses. Eventually, it
finds an optimal treatment plan, with the lowest possible potency and frequency of doses that
should still reduce tumor sizes to a degree comparable to that of traditional regimens. In simulated
trials of 50 patients, the MLmodel designed treatment cycles that reduced the potency to a quar-
ter or half of nearly all the doses while maintaining the same tumor-shrinking potential, and thus
promises improvements in patient adherence and reductions in dropouts and censuring. Picking
up early warning signs for non-adherence allows proactive engagement with individual patients
and permits the root causes of problematic behavior to be addressed: for example, severe side
effects or incompatibility of study and personal routines could be detected and remedied before
they lead to dropout. The choice of sensors and analytical models is highly disease-specific and
will need to be part of the clinical study design.

Using DL for object recognition in images and video, as well as for analyzing time-series data
from wearable sensors, first studies for testing and exploring AI-assisted patient monitoring sys-
tems have recently been startedxiv or completed successfullyxv [34]. The advent of commercially
available wearable devices with medical-grade health-sensing capabilitiesxvi, as well as comple-
mentary software ecosystems for running advanced DL modelsxvii–xix on such mobile platforms,
will allow more diversified sensor combinations to be investigated for a variety of diseases. In a
previous study, Shah et al. evaluated the significance and efficacy of clinical evidence generated
from advanced technology-enabled non-invasive diagnostic screening (TES) using low-cost
584 Trends in Pharmacological Sciences, August 2019, Vol. 40, No. 8
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smartphones and other point-of-care medical sensors versus conventional vital signs examina-
tion. They report that, although routine health screening continues to be important, the emerging
techniques of TES can play an important synergistic role in stratifying populations and providing
personalized screening and care in support of clinical trial designs and observational studies to
generate innovative, new treatment approaches [35]. We expect to see more pilot studies
benchmarking the impact of such technologies on trial efficiency alongside ongoing clinical trials
in the near future; to illustrate this, in the following we give a detailed view into neurology.

Neurological diseases occupy a special role regarding drug development: neurology trials are
among the four lowest-performing trial types alongside cardiovascular, psychiatry, and oncology
trials [2]. It is exceptionally challenging to monitor patients in neurological trials for adherence con-
trol and endpoint detection. Often the nature of acute episodes of neurological disorders makes it
impossible for patients to self-monitor, to control their behavior, or to keep an event log. For ex-
ample, an epileptic patient experiencing an absence seizurewill simply not be able to self-report
the incident. A patient going through prolonged depressive episodes might decide to not take
medication and also to not report such a deviation from the trial protocol. Even third-party mon-
itoring by an experienced medical practitioner or independent observer does not allow reliable
event-logging in most neurological diseases.

The reason for this complication is predominantly that neurological diseases usually tend to be
highly individualized, in other words they look different in individual patients, and even for a spe-
cific patient their manifestations tend to change over time. This makes the diagnosis and treat-
ment of neurological disorders a particularly challenging endeavor: for the same disease a
diagnostic profile for one patient may not apply to another patient, and even for the same patient
diagnostic patterns might shift over time. This prevents following a one-size-fits-all, rule-based di-
agnostic and treatment path. A technology platform that can be trained to continuously analyze
and interpret patient data for an individual patient as they accumulate over time, and automatically
adjusts to changes in disease expression and treatment response, will be necessary to allow
learning from these heterogeneous data. Recent AI hardware and software developments dem-
onstrate that AI and wearable sensors can be combined to implement such an automatic, real-
time, patient monitoring and analytics technology.

DL algorithms are uniquely positioned to cater to these requirements and to thus bring precision
medicine to neurology. Recent advances in custom-developing mobile processors and coding
environments allow DLmodels to be run close to or at the point of sensing. This transforms wear-
ables from pure information storage and transmission devices into information digestion and an-
alytics devices – a novel concept which we call 'cognitive sensing'. Wearables measure biometric
parameters through mobile systems attached to the human body, and either store the collected
data on the device or send it to the cloud for offline analysis. As the wearable revolution unfolds, a
rapidly increasing number of parameter types can be monitored simultaneously, making storage
and transmission of unfiltered sensor data impossible. Algorithms for analyzing, in other words
continuously correlating, contextualizing, and filtering raw data in real-time directly at the point
of sensing, will be necessary to extract actionable information before the need for data storage
or transmission arises. DL models in combination with on-sensor data preprocessing and
curation systems allow this task to be accomplished. The architecture of such wearable, auton-
omously operating, always-on, cognitive sensors (Figure 3) consists of the following system com-
ponents: (i) minimum-footprint biosensors feeding into (ii) low-power mobile processors capable
of locally running DL models with (iii) closed-loop interfaces to (iv) an event diary which instantly
and proactively logs information on specific disease episodes and interacts with wearer or care-
giver for patient support, guidance, and intervention. The event diary can thus utilize a local
Trends in Pharmacological Sciences, August 2019, Vol. 40, No. 8 585
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Figure 3. Cognitive Sensors. Data are measured by a wearable sensor and analyzed in real-time at the point of sensing by
a mobile processor that runs an artificial intelligence (AI) model. Analysis results are then stored on a local log, in the cloud, o
through a combination of both.
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memory unit, a remote cloud repository, or a hybrid version of both. Various wearable biosensor
and actuator platforms in different stages of technical maturity have been demonstrated or are
currently under development [36] (Table 1).

The predominant type of data which most of these sensor types measure is time-series data. Al-
though DL has traditionally focused on analyzing imagery data using deep convolutional neural
networks, recent work has demonstrated that custom-designed neural network models are
also uniquely suitable to analyze complex time-series streams [37–39]. To run DL algorithms con-
tinuously in real-time at the point of sensing, ultra-low-power consumption mobile processors are
needed. Advances in developing both novel AI hardware and AI software techniques over the
past 3 years have led to several versions of such AI-tailored mobile processing solutions now
being available for real-life use. These solutions can be categorized into three general types:

Image of Figure 3


Table 1. Possible Candidates for Incorporation into Cognitive Sensors

Type of sensor Componentsa Application Refs

Neural implants Retinal stimulation electrodes Bionic Eye [59]

EEG and ECoG electrodes Brain activity monitoring, deep brain-stimulation, controlling prostheses with
thought

xlii,xliii

Artificial skin sensors Tactile prostheses [60]

Electroceuticals Nerve- and brain- stimulation xliv

Tattoo sensors Smart contact lenses Biomarker detection xlv

Electrochemical tattoo batteries Multimodal data measurement [61]

Always-on EEG electrode tattoos

Low-cost integrated circuit patches [62]

Molecular
sensors

Nano- and Microfluidic sensors, portable DNA
sequencers

DNA sequencing [63]

Smart pills, nanobiosensors,
functionalized nanoparticles

Biomarker detection [64]

aAbbreviations: ECoG, electrocorticography; EEG, electroencephalography.
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(i) custom-developed hardware requiring custom developed AI coding environments, such as
IBM’s TrueNorth chip [40], (ii) custom-developed hardware compatible with standard AI
programming tools, such as Qualcomm’s Snapdragon chip seriesxx and Intel’s Movidius
processorxxi, and (iii) conventional mobile processors which can be programmed using standard
AI coding platforms, such as the Apple Watchxvi, Apple’s XS iPhone series carrying the A12
Bionic chipxxii, and also a variety of other smartphonesxxiii.

Based on some of these techniques, the first cognitive-sensing applications have emerged in the
field of applied neuroscience for monitoring and interpreting brain activity, diagnostics, and pre-
dictive prevention in epilepsy and mental disorders, deep-brain stimulation, brain–machine inter-
facing, and bionics: several groups have demonstrated the feasibility of using mobile AI for real-
time epileptic seizure detection [41]xxiv and prediction [42,43]xxv. The same DL algorithm can
be deployed across multiple patient cohorts, and automatically adapts to the individual disease
patterns of each patient as they evolve and change over time. The demonstrated monitoring sys-
tems remain operational over extended periods of time without the need for any third-party input,
and will thus become the personal seizure detector and predictor for each patient. In other dem-
onstrations, wearable devices and ML models have been used to automatically detect cognitive
and emotional statesxxvi, to monitor patients in Parkinson’s disease trialsxiv, and to assess quality
of sleep (among other parameters) in neurology trialsxxvii.

As pointed out previously, interoperability and standardization of data and methodology are key
challenges for integration of AI into clinical trial design. The same is true for wearable AI technology
and devices. Regulatory bodies, in collaboration with academic, medical, and pharma institu-
tions, have started to produce standardization frameworks and best practice recommendations
for incorporating wearable technology into clinical trial designxxviii–xxx.

Ongoing research at the intersection of AI, Internet of things (IoT), and healthcare will produce
more medical-grade devices with advanced analytics capabilities for continuous real-time moni-
toring of patients and disease progression [44]xvi. If an equally strong focus on standardization
and interoperability is maintained, these devices might make cognitive sensing an effective tool
for improving the performance of neurology trials. It is important to note, however, that data
Trends in Pharmacological Sciences, August 2019, Vol. 40, No. 8 587



Outstanding Questions
Howdowe collate andmine large sets of
genomic data, past clinical studies, jour-
nal articles, and related real-world data,
potentially distributed over multiple insti-
tutions and geographies, to improve pa-
tient selection, protocol adherence,
patient eligibility computations, patient
visit management, site performance, re-
tention statistics, and adverse event
detection?

Can an open repository where re-
searchers can upload their protocols
and practices, share them in public or
private groups, and receive credit for
them, be deployed to make these data
available for training AI and ML models?

Can we create collaborative ecosystems
which incentivize owners of proprietary
datasets to allow their data to be collec-
tively used to train AI and ML models,
while at the same time preserving the
value and honoring access and usage
restrictions of these datasets?

Can AI and ML algorithms be encrypted
to preserve patient identity and facilitate
sharing of trained models with various
stakeholders?

Will AI and ML toolboxes, developed
predominantly for non-medical fields, be
successfully adapted or ported over for
learning, classifying, and predicting from
heterogeneous medical datasets?

Is a new clinical development process for
more comprehensive data collection fea-
sible, where a network of trained
healthcare professionals visit patients in
their homes or places of work to collect
essential data for them to participate in
clinical trials?
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integrity and safety occupy a central role in the conception, implementation, and exploitation of
digital disease diaries: patients, doctors, and regulatory bodies will rely on the integrity and safety
of sensitive patient data and of analytical insights derived from it. While HIPAA-compliant environ-
ments constitute the data security baseline, advanced generations of AI-based monitoring and
data-housing platforms will employ blockchain technology for ensuring trusted and traceable
multiparty communication and exchange of monitoring dataxxxi–xxxiii.

Conclusions and Future Perspectives
The status quo of the development process for new drugs has put big pharma and other spon-
sors of clinical development in a dilemma [45]i where the era of blockbuster drugs is coming to an
end but the R&D process for adding new drugs to the portfolio is too slow and too expensive to
compensate for this change. A fundamental transformation of the underlying business and inno-
vationmodel of the entire industry is needed for a paradigm shift to a new sustainable trajectory of
growth and progress.

Over the past 5 years modern AI techniques have advanced to a level of maturity that allows them
to be employed under real-life conditions to assist human decision-makers in computer vision,
navigation, and in some cases of medical and healthcare environments [46]. At the same time,
pharma and healthcare are still among themost highly regulated and risk-averse industries. Infus-
ing innovation that changes established processes is a difficult task that needs to be approached
and implemented in a stepwise manner. Although AI has the potential to impact numerous steps
of clinical trial design from preparation to execution [47], any AI pitch that aims to tackle all aspects
at once is predestined for failure. Instead, data scientists andmedical scientists should jointly define
achievable use cases where the application of well-understood AI tools to a specific subtask of
clinical trial design promises the greatest improvement of overall trial performance (Figure 2).
Such AI technology first needs to be tested alongside the existing technology it aims to comple-
ment or replace, and the added value must be demonstrated and benchmarked in an explainable,
ethical, repeatable, and scalable way – not only to users but also to regulatory bodies. Following
this approach AI may be adopted into the clinical trial ecosystem step-by-step, making trials faster,
while at the same time hopefully lowering failure rates and R&D costs. Several pharma and AI
companies have started to jointly explore this avenue [47]xxxiv–xxxvii. Regulators have put in place
and continue to expand frameworks for assessing AI-based technologies in healthcarexxxviii.

Further, completed trials have amassed a corpus of data which carries a wealth of information on
correlations between trial design features and trial performance. This includes data from failed
clinical trials. These large and unstructured datasets are predestined to be analyzed by AI tech-
nologies. Insights could be used to educate future improved trial designs and also to investigate
the potential relevance of already trialed drugs against comorbidities for drug repurposing [8].
Nevertheless, failed trial data in particular tend to be a neglected asset that has remained largely
untouched on the shelves.

It is important to note that the measurable impact of any such steps on the efficiency of the
pharma R&D pipeline – even if implemented successfully nowxxxvii

–will not show up in the statis-
tics until after a 5–8 year delay. Moreover, there will be additional R&D costs on top of the ongoing
costs; in other words, from a required investment perspective, things will get worse before they
will get better.

The AI techniques described in this review offer real-life practicability; however, particularly with
respect to explainability, these techniques must mature to allow their broader inclusion in
healthcare and life sciences applications. Although these developments are in full swing, we
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need to acknowledge that the opportunity to transform the drug development cycle through AI
comes with a great responsibility for all the disciplines involved and the mandate to qualify the
value and reliability of any innovation through rigorous R&D work. This exploratory research
pilot phase may not be bypassed for any reason because any breach of research protocol or pre-
mature setting of unreasonable expectations will inevitably undermine trust and ultimately the
success of AI in the clinical sector.

In the sameway as a change of clinical trial design alone will not turn efficiency of the pharma R&D
cycle from decay to growth, AI is not amagic bullet that will make the success rates of clinical trials
skyrocket overnight (see Outstanding Questions). Both reshaping clinical trial design and using AI
techniques for doing so are important building blocks of a much-needed overhaul of the drug de-
velopment cycle.
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