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Proceedings of a Workshop
 

WORKSHOP OVERVIEW1 

A hallmark of high-quality cancer care is the delivery of the right treat
ment to the right patient at the right time. Precision oncology therapies, which 
target specific genetic changes in a patient’s cancer, are changing the nature 
of cancer treatment by allowing clinicians to select therapies that are most 
likely to benefit individual patients. In current clinical practice, oncologists 
are increasingly formulating cancer treatment plans using results from complex 
laboratory and imaging tests that characterize the molecular underpinnings 
of an individual patient’s cancer. These molecular fingerprints can be quite 
complex and heterogeneous, even within a single patient. To enable these 
molecular tumor characterizations to effectively and safely inform cancer care, 
the cancer community is working to develop and validate multiparameter 
omics tests and imaging tests as well as software and computational methods 
for interpretation of the resulting datasets. 

To examine opportunities to improve cancer diagnosis and care in the 
new precision oncology era, the National Cancer Policy Forum developed a 
two-workshop series. The first workshop focused on patient access to exper

1 The planning committee’s role was limited to planning the workshop, and the Proceed
ings of a Workshop was prepared by the workshop rapporteurs as a factual summary of what 
occurred at the workshop. Statements, recommendations, and opinions expressed are those 
of individual presenters and participants, and are not necessarily endorsed or verified by the 
National Academies of Sciences, Engineering, and Medicine, and they should not be con
strued as reflecting any group consensus. 
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2 IMPROVING CANCER DIAGNOSIS AND CARE 

tise and technologies in oncologic imaging and pathology and was held in 
February 2018.2 The second workshop, conducted in collaboration with the 
Board on Mathematical Sciences and Analytics, was held in October 2018 to 
examine the use of multidimensional data derived from patients with cancer, 
and the computational methods that analyze these data to inform cancer 
treatment decisions. 

The workshop convened diverse stakeholders and experts, including clini
cians, researchers and statisticians, and patient advocates, as well as represen
tatives of health care organizations, academic medical centers, insurers, and 
federal agencies. The workshop included presentations and panel discussions 
on the current state of computational precision oncology and its opportuni
ties, challenges, and limitations. Topics explored included 

•	 Data quality, completeness, sharing, and privacy; 
•	 Preclinical and clinical validation of the reliability, safety, and 

effectiveness of diagnostic tests and clinical decision support tools; 
•	 Regulatory oversight and reimbursement; 
•	 Communication of omics findings to clinicians and patients; and 
•	 Lessons from the use of computational precision oncology in clinical 

practice. 

This workshop proceedings highlights suggestions from individual participants 
regarding potential ways to improve the translation of computational precision 
oncology into clinical practice. These suggestions are discussed throughout the 
proceedings and are summarized in Box 1. Appendix A includes the Statement 
of Task for the workshop. The agenda is provided in Appendix B. Speakers’ 
presentations and the webcast have been archived online.3 A brief summary 
of the first workshop in the series can be found in Box 2. 

NEW PARADIGM IN CANCER DIAGNOSIS AND CARE 

Several speakers described the evolving paradigm in precision cancer 
diagnosis and care due to the advent of new techniques for the molecular char
acterization of patients’ tumors, as well as advanced computational methods 
for interpretation of these complex data. 

Christopher Cogle, professor of medicine at the University of Florida 
College of Medicine, compared computational modeling with the more tradi
tional approaches for preclinical assessment of oncology drugs: in vitro and 

2 See https://www.nap.edu/catalog/25163 (accessed January 2, 2019). 
3 See http://nationalacademies.org/hmd/Activities/Disease/NCPF/2018-OCT-29.aspx 

(accessed January 2, 2019). 

https://www.nap.edu/catalog/25163
http://nationalacademies.org/hmd/Activities/Disease/NCPF/2018-OCT-29.aspx


  

 

  

    

  

 

  

  

   

   

   

   
 

  

   

  

3 PROCEEDINGS OF A WORKSHOP 

BOX 1
 
Suggestions from Individual Workshop Participants 


to Improve the Translation of Computational 

Precision Oncology into Clinical Practice
 

Reducing Bias in Computational Precision Oncology
•	 Emphasize inclusion and diversity in datasets to prevent

development of biased clinical tools. (Abernethy, Brawley, 
Shah)

•	 Aggregate data from different geographic, ethnic, and socio-
economic populations. (Abernethy)

•	 Improve care for individuals and populations in an equitable 
manner. (Ferryman) 

Improving Validation and Reproducibility in Computational
Precision Oncology

•	 Establish processes for assessing and monitoring perfor-
mance, reproducibility, and safety of algorithms. (Gatsonis, 
Goodman)

•	 Assess tests using multiple datasets that are representa-
tive and unbiased to establish validity across populations. 
(Goodman, McShane, Parmigiani)

•	 Assess clinical validation in well-designed, prospective
studies. (Gatsonis)

•	 Validate tests for specific intended uses. (McShane,
Schilsky)

•	 Improve transparency and face validity of algorithms.
(Amler, Cogle, Oliver) 

•	 Develop standard protocols to minimize variance due to
testing methodology in assessments of reproducibility.
(Goodman)

•	 Assess analytic and clinical validity of quantitative imaging 
tools. (Petrick) 

Addressing Regulatory Oversight of Computational Precision 
Oncology

•	 Increase federal regulation of computational precision
oncology. (Butte, Shah) 

•	 Develop federal regulations for laboratory developed tests. 
(Flaherty) 

continued 



 

 

 

  
   

  

  

   

   

  

  
   

  

  
  

  
 

  
 

4 IMPROVING CANCER DIAGNOSIS AND CARE 

BOX 1 Continued 

• 	 Enhance postmarket surveillance to collect more real-world evi-
dence and capture patients’ longitudinal experiences. (Khozin) 

• 	 Enable the Food and Drug Administration to engage with aca-
demic partners to validate new precision oncology technologies. 
(Chu) 

Addressing Payer Concerns
•	 Conduct national studies to aid evidence-based reimbursement 
decisions for genomic testing and treatment. (Butte, Kelley,
Newcomer)

•	 Develop payment models for the clinical interpretation of com-
plex genomic data. (Chin, Newcomer)

•	 Develop policies to enable broad molecular testing for patients 
with cancer. (Nadauld) 

Addressing Research Gaps
•	 Identify factors that alter cancer treatment response. (Amler,

Flaherty)
•		 Biopsy patients’ tumors after disease progression to study vari-

ability in treatment response. (Amler)
•	 Study the implementation and impact (e.g., ethical, legal, and 

social impacts) of computational precision oncology in the clinic. 
(Joseph, Levy)

•	 Conduct more pragmatic and adaptive clinical trials. (Weichold) 
•	 Use real-world data from routine clinical care to identify and

assess potential molecular markers for targeted cancer treat-
ments. (Amler, Kelley, Oliver) 

•	 Investigate exceptional treatment responses to identify associ-
ated genetic markers. (Khozin, McShane, Shah)

•	 Use claims data for postmarket approval surveillance. (Newcomer) 
•	 Increase funding for validation of computational precision oncol-

ogy tools. (Gatsonis, Oliver, Parmigiani) 

Developing Patient-Centered and Clinician-Friendly Tools
•	 Design decision support algorithms that can be easily integrated 
into electronic health records and clinical workflows. (Levy,
McLeod)

•	  Enhance training for clinicians to help them understand, evaluate,
and implement computational precision medicine tools. (Chu,
Cogle, Oliver, Petrick) 



  

  

  

  

  

  
 

  

   
 

   
 

  

   

 

  

  

  
  

  

5 PROCEEDINGS OF A WORKSHOP 

•		 Develop flexible precision oncology systems that can accom-
modate new information and technologies. (McLeod)

•	 Identify and address the fundamental cause(s) of minority under-
representation in datasets used to develop precision oncology. 
(Patrick-Lake)

•	 Develop implementation strategies to avoid exacerbating health 
disparities. (Cogle, Ferryman, Oliver, Patrick-Lake) 

Improving the Process of Informed Consent
•	 Simplify informed consent documents so they are more compre-

hensible to patients. (Magnus, McGraw)
•	 Explore non-written communication techniques, such as illus-

trated comics and videos, to better convey information to
patients. (Magnus)

•	 Explain the limitations of genomic analyses to patients. (Schilsky) 

Creating Data Standards for Computational Precision Oncology
•	 Adopt policies to ensure transparency about data reliability,

quality, and completeness. (Abernethy) 
•	 Create standards for documenting reliability and accuracy at

the level of the data source, dataset, and algorithm. (Abernethy, 
Cogle, Newcomer)

•	 Develop standards for interoperability across health care sys-
tems. (Oliver)

•	 Create a standardized level of evidence framework for developing
computational precision oncology. (Kelley, Levy, Oliver) 

• 	 Make genetic testing a standard of care to generate data for vali-
dation of diagnostics, decision support tools, and new targeted 
therapies. (Amler, Oliver) 

Improving Data Sharing
•	 Share data across consortia to increase the diversity and size of 

datasets. (Cogle, Magnus, Parmigiani)
•	 Incentivize data sharing by researchers and institutions. (Levy, 

McShane)
•	 Acknowledge researchers who share data. (Levy)
•	 Enable patients to authorize future use of data for research pur-

poses. (McGraw)
•		 Give patients access to their own data. (Butte, Khozin, Levy, 

Weichold) 

continued 



 

 

   

  

   

  

 
 

 
  

 

 

 

       

 
  

 
 
 
 

 
 
 

          

6 IMPROVING CANCER DIAGNOSIS AND CARE 

BOX 1 Continued 

• 	 Develop methods and technologies that empower patients 
to more easily share their data, including providing patient 
data in a portable and adaptable format. (Levy, McGraw) 

Improving Data Security
•	 Implement standards for data sharing to protect patient

privacy. (McGraw) 
•	 Increase transparency in how patient data are collected, 

shared, and used. (Levy, McGraw, Patrick-Lake) 
•	 Increase security for transfer of data among databases.

(Abernethy) 

Promoting Multidisciplinary Teamwork
•	 Engage multidisciplinary teams with pathologists, radi-

ologists, oncologists, pharmacologists, genetic counselors, 
health information technology experts, mathematicians,
and computer scientists. (Chin, Hricak, McLeod, Oliver,
Parmigiani, Shah) 

•	 Involve social scientists in the development of computa-
tional precision oncology methods to contextualize data and
minimize latent bias in datasets. (Ferryman) 

in vivo studies. For in vitro studies, tumor cells are removed from patients or 
animals and tested in the laboratory with a potential drug or drug combina
tion. However, he said in vitro results are not strongly correlated with clinical 
efficacy (Burstein et al., 2011). For in vivo testing, potential drugs are admin
istered to animals with tumors. In vivo testing may be more predictive of 
clinical efficacy, but this has not been shown conclusively, according to Cogle. 

By contrast, computational modeling uses large sets of patient and tumor 
data to predict efficacy of specific therapies for different tumor subtypes. 
Computational modeling can consider multiple tumor characteristics and 
drug options simultaneously, and findings can be updated with advancing 
knowledge. Lisa McShane, acting associate director for the Division of Cancer 
Treatment and Diagnosis and chief of the Biometric Research Program at the 
National Cancer Institute (NCI), said that computationally intensive methods 
are best suited to answering complex questions in which there are many 
variables to consider and data from a large number of patients. She said that 
a major challenge in the development of complex computational algorithms 



  

 

 
   

 

 
 

  

 

 

  

7 PROCEEDINGS OF A WORKSHOP 

BOX 2 

Overview of the First Workshop on 


Improving Cancer Diagnosis and Care
 

Hedvig Hricak, chair of the department of radiology at the
Memorial Sloan Kettering Cancer Center, summarized potential
actions suggested by individual participants at the first workshop 
on improving cancer diagnosis and care, hosted by the National 
Cancer Policy Forum, which focused on patient access to oncologic
imaging and pathology expertise and technologies. 

Improving Education and Training in Oncologic Pathology 
and Imaging

Hricak noted the challenges of cancer diagnosis and the
important role of radiologists and pathologists with oncologic
expertise. She stressed the need to improve education and training 
within those specialties, beginning with residency training and con-
tinuing with oncology fellowships and other subspecialty training. 
Radiologists and pathologists also should be trained to use machine
learning technologies in clinical imaging practices, Hricak said. 

Expanding Access to Expertise on Oncologic Pathology and 
Radiology
Insufficient numbers of radiologists and pathologists have train-

ing in oncologic imaging and pathology, especially in many rural 
counties, Hricak said, suggesting that access to such expertise
could be expanded by using teleradiology and telepathology, and 
second opinion networks. 

Increasing Integration and Collaboration Among Specialties 
in Cancer Care 

Hricak said integrated diagnostic reports can improve patient 
care, and tumor boards are an important way to engage clinicians 
across specialties to discuss cases and they enhance radiologists’
expertise in diagnostic interpretation. “You are a much better radi-
ologist when you work in a multidisciplinary team and can issue 
clinically relevant reports,” she noted. 

Improving and Increasing the Use of Clinical Decision Support
Clinical decision support tools should be efficiently embedded 

into a clinician’s workflow and should provide brief, actionable, and 

continued 



 

 

 
 

 
  

 

 
         

    
 
 

 

8 IMPROVING CANCER DIAGNOSIS AND CARE 

BOX 2 Continued 

clear-cut advice, said Hricak, noting that such decision support can 
reduce variations in care and improve adherence to best practices. 

Promoting Lifelong Learning, Assessment, and Quality 
Improvement Efforts

Lifelong learning and performance assessment and feedback 
can enable clinicians to master rapidly accumulating new knowledge
in medicine. 

Supporting Innovation in Oncologic Pathology and Imaging
Enhancing partnerships among computational pathology,

genomics, and radiology can facilitate innovation and improve
patient care. 

Engaging Patients
Hricak stressed the importance of incorporating patient input 

when developing tools and systems for diagnostic integration and 
of considering patient accessibility when planning and developing 
new technologies. It is also important to communicate complex diag-
nostic information to patients in an understandable way, she said. 

Improving Data Curation, Integration, and Sharing
To achieve integrated diagnostics, Hricak said it would be

necessary to make databases interoperable; create national
standards for ensuring data completeness and quality in shared 
databases; systematically curate and integrate data into large
aggregated health databases; and improve efforts to collect health 
data directly from patients. 

SOURCES: Hricak presentation, October 29, 2018; NASEM, 2018. 

in oncology is the lack of sufficiently large datasets; when computational 
algorithms are derived from an inadequate number of patients, they often fail 
when tested in independent datasets. 

Cogle stressed that the quality of computational modeling output depends 
on the quality and completeness of the data used. McShane agreed and added 
that there is a misconception that powerful computational methods can com
pensate for poor-quality data. However, the application of computational 



  

 
         

 

 
        

 
 
 
 

        
 

 
 
 
 
 

   
 
 
 
 

            
          

   

 
 
 

          
  

  
 
 
 
 
 
 
 

9 PROCEEDINGS OF A WORKSHOP 

methods on large quantities of poor-quality data typically lead to poorly per
forming algorithms (see section on Data Quality and Completeness). 

Cogle noted that early precision oncology efforts used diagnostic tests to 
assess the activity of a single gene (e.g., human epidermal growth factor recep
tor 2 [HER2] in breast cancer) and to match patients to a single drug targeting 
that activity. Current precision oncology diagnostic testing is more complex, 
including multiplex testing to identify the tumor’s genetic sequence (genome), 
active genes (exome), and proteins (proteome). This complex information has 
the potential to enable more precise targeting of therapies. However, Cogle 
stressed that “from a regulatory perspective, there is not much guidance on 
how to use a more complex system other than single-gene–single-drug match
ing, and our technology is way beyond that.” 

Atul Butte, director of the Bakar Computational Health Sciences Institute 
at the University of California, San Francisco, noted that molecular character
izations of patient tumors show that although tumors often share several com
mon gene aberrations, many also have rare genetic flaws, with some unique 
to a single patient. For example, he said there may be nearly 1,000 different 
subtypes of lung cancer, defined by their unique genetic signatures. Some of 
these subtypes may include highly specific targets for drug therapy that will 
be effective in only a small number of patients. Keith Flaherty, director of 
the Henri and Belinda Termeer Center for Targeted Therapy, said, “We need 
a strategy, both diagnostic and therapeutic, that is going to allow us to make 
more rapid inroads into potentially very small patient subpopulations.” He 
also noted that treatment-salient features can vary across tumors, even within 
an individual patient. If most of a patient’s tumors have a molecular feature 
targeted effectively by a drug, their cancer will still eventually progress because 
of the subpopulation of tumor cells that can resist treatment. 

Hedvig Hricak, chair of the department of radiology at the Memorial 
Sloan Kettering Cancer Center, showed how tumor heterogeneity in an indi
vidual patient can be revealed with molecular imaging. This imaging can 
facilitate appropriate treatment selection and is also used in drug development 
to optimize target engagement and determine appropriate dosage, she noted. 
“Molecular imaging is essential in patient- and value-driven care, and imag
ing in drug development is now slowly being accepted around the Western 
world,” she said. 

Howard McLeod, medical director of the DeBartolo Family Personalized 
Medicine Institute, said genetic testing of a patient’s tumor and germline 
genome will be pivotal to the success of precision medicine. He noted that 
genetic information provides diagnostic, prognostic, treatment, and toxicity 
risk information, and can also suggest appropriate clinical trials for patients. 
However, genetic reports on individual patients can be as long as 50 pages, 
with listings of hundreds of variants that may not have clinical significance. 



 

         
 
 
 
 

      
 
 
 

 
 
 
 

  
 

          

 
    

 
  

 
    

 
 
 
 
 
 

 
 
 
 
 
 

10 IMPROVING CANCER DIAGNOSIS AND CARE 

McLeod noted that it is difficult to interpret this genetic information, even for 
clinicians trained in molecular oncology. Lincoln Nadauld, executive director 
of precision medicine and precision genomics at Intermountain Healthcare, 
said that when his organization first launched their program of tumor genetic 
testing, clinicians used the test results less than 20 percent of the time, often 
because they were uncomfortable interpreting the data. 

Mia Levy, director of the Rush University Cancer Center, also emphasized 
the growth of genomic data, with complex tests now able to detect hundreds 
of genetic changes. She said clinicians need decision support tools that address 
which tests to order, how to interpret and report test results, and how to com
bine genetic features with other patient features to determine an appropriate 
treatment. Lee Newcomer, principal of Lee N. Newcomer Consulting, agreed, 
saying, “We can’t take the multiple variables coming in now from oncology 
patients about the microenvironment, genomics, etc., and process those in a 
human brain. We need computational methods to drive us in the direction 
of making more subtle clinical decisions.” Hricak stressed, “Only by proper 
predictive modeling are we going to have personalized treatment.” Levy added, 
“We’re at this precipice of change in how we think about clinical decision sup
port in medicine, which has evolved from the evidence-driven paradigm, to 
protocol-driven care, to data-driven approaches.” 

Computational Technologies 

Machine Learning 

Pratik Shah, principal research scientist and a principal investigator at 
the Massachusetts Institute of Technology (MIT) Media Lab who leads the 
Health 0.0 research program, classified computational technologies used in 
precision oncology in a hierarchy of three major types. At the bottom level is 
automation. An example of automation is a machine learning computer algo
rithm trained with thousands of photographs that uses prior data to identify 
specific features in new images. “This low-level intelligence depends on large 
datasets and is subject to bias and invalid causal inferences,” he said. The 
middle level is knowledge creation, such as using machine learning to create 
new knowledge from data that humans might perceive, but do not understand 
how to use. The highest level is artificial intelligence (AI), in which the algo
rithm uses computational processes that are beyond human cognitive capacity. 

According to Shah, most machine learning applications are in the form 
of automation. There are few examples of knowledge creation, he said, and 
even fewer examples of true AI. McLeod noted that fully AI-driven care may 
be achievable, but is still a distant goal because “there hasn’t been that hard 
work done to build the knowledge to have the I in AI.” He noted that such 



  

 
        

 
 

  
   

  
 
 
 
 
 
 
 
 
 

          
 
 
 

 
 
 

       
  

  
 

 
           

 
  

 
 
 
 

        
 
 
 
 

11 PROCEEDINGS OF A WORKSHOP 

intelligence needs to be able to consider the full patient context, such as kidney 
function, body weight, comorbidities, patient preferences, and cost. 

Shah provided several examples of how computational technologies are 
being used for knowledge creation to support clinical decisions. In response 
to a request from clinicians at Brigham and Women’s Hospital, he and his 
colleagues devised a method to computationally “stain” prostate biopsy tissue 
slides without physically staining them (Rana et al., 2018). Traditionally, such 
slides are stained with a dye such as hematoxylin and eosin (H&E) that makes 
certain diagnostic features more prominent and facilitates cancer diagnosis. 
Shah and colleagues used a machine learning program to detect those features 
in tissue samples without staining, and then digitally altered the images akin 
to what a physical H&E stain would do when applied to the tissue slices. Shah 
and colleagues also created a neural network system that could digitally remove 
the stains on old stored samples and digitally re-stain them to identify different 
features. He is now testing this digital staining with clinicians, most of whom 
cannot distinguish between the digitally stained and physically stained tissues, 
and are able to diagnose tumors equally well in both types. 

Shah also reported on a project in which he and colleagues used archived 
clinical trial data to train a computational algorithm to identify novel patterns 
in treatment toxicity and to use that information to optimize dosing regimens 
(Yauney and Shah, 2018). The program applies a technique called “reinforce
ment learning,” which teaches the algorithm to prioritize the goal of tumor 
reduction while minimizing adverse effects. The computer-driven regimens 
provided doses at different amounts and intervals and skipped more doses 
compared to dosing regimens devised by clinicians. 

Constantine Gatsonis, founding chair of the Department of Biostatistics 
and the Center for Statistical Sciences at the Brown University School of Public 
Health, provided several examples of machine learning programs designed to 
aid diagnosis and treatment in oncology. One uses magnetic resonance imag
ing (MRI) features of rectal cancer patients to predict treatment response after 
chemotherapy and radiation therapy. In a retrospective study of 114 patients, 
the predictor performed better than qualitative assessments by radiologists 
(Horvat et al., 2018). Although this study and others have shown promising 
results, Gatsonis stressed that the clinical utility and stability of the algorithms 
have yet to be determined. Furthermore, it remains to be seen how reliably the 
algorithms will perform when tested on patients less similar to those on whose 
data and imaging they were trained. He also noted that these learning systems 
will continue to evolve as they are trained on new data. 

Wui-Jin Koh, senior vice president and chief medical officer of the National 
Comprehensive Cancer Network (NCCN), asked how machine learning and AI 
might help primary care clinicians in the diagnosis of cancers at earlier stages. 
Bray Patrick-Lake, program director of the Duke Clinical Research Institute 



 

  
 
 
 
 
 
 
 
 
 
 
 
 

      

 

 
 
 

 
   

 
 
 
 

 
       

 
 

          
            

12 IMPROVING CANCER DIAGNOSIS AND CARE 

Research Together™ program, responded that computational oncology could 
aid primary care clinicians when deciding whether a suspicious lesion should be 
biopsied. Newcomer added that computational technologies are being applied to 
the analysis of circulating free DNA in blood samples to develop tests to detect 
early-stage cancers. However, he cautioned that some computational screening 
technologies may not add significant value. He said one study found that a 
computational method to improve mammography screening did not reduce 
the rate of false positives, and only increased the breast cancer detection rate 
by two-tenths of 1 percent (0.002%). Giovanni Parmigiani, associate director 
for population sciences at the Dana-Farber/Harvard Cancer Center, noted that 
machine learning and genetic tests could identify primary care patients at high 
risk for cancer and might motivate behavior change that could prevent cancer. 
“As we continue our policy discussions about precision oncology, I hope we don’t 
leave behind the precision prevention side,” he said. 

Machine Learning Applications in Radiology 

Hricak stressed that the future of medicine lies in the integration of tech
nology with human skills. She said that the increasing complexity of technolo
gies used in radiology will alter the role of the radiologist, so that instead of 
searching through images and identifying features, the radiologist will synthe
size clinical features identified via technology to interpret the findings. Machine 
learning will help radiologists to evolve from spending a large portion of their 
time as “film readers” to functioning more fully as physician–consultants who 
facilitate diagnosis. Radiologists will need to “adapt or perish,” she added, quot
ing the motto in the logo of the SSG Heathe N. Craig Joint Theater Hospital 
at Bagram Airfield. 

Hricak also noted that a computer program can reliably identify changes 
in a longitudinal series of patient images within a few minutes. This will save 
radiologists time, while allowing them to provide a more precise assessment of 
the treatment response. Lawrence Shulman, professor of medicine and deputy 
director of clinical services at the University of Pennsylvania Abramson Cancer 
Center, agreed. He added that machines are not likely to replace clinicians but 
will improve efficiency and accuracy in oncology. 

Health Apps 

Gatsonis noted that numerous smartphone apps allow the user to send a 
photograph of a mole or other skin feature to be evaluated by a clinician or an 
algorithm. Gatsonis reported the example of a single convolutional neural net
work (which has potential for smartphone applications) that performed as well 
as 21 dermatologists in classifying general skin lesions (Esteva et al., 2017). 



  

 
 

 
 
 

 
 

 
 
 
 
 
 

   
  

 
 
 
 

      

 

 

 
 
 

 
 
 
 

13 PROCEEDINGS OF A WORKSHOP 

Butte noted that a new smartphone app that can provide access to 
patients’ health records at multiple facilities will facilitate the creation and 
dissemination of other health apps. “That’s the future—I can imagine hun
dreds of apps in the next year helping patients navigate through their cancer 
care because I see people writing these apps to deal with health records directly 
without having to know about various health systems or medical health record 
systems,” Butte said. 

But Frank Weichold, director for the Office of Critical Path and Regula
tory Science Initiatives in the Office of the Chief Scientist and the Office of 
the Commissioner for the Food and Drug Administration (FDA), expressed 
concern that health data from apps may not be sufficiently authenticated and 
vetted for quality. Gatsonis added, “Before we put these to use, we need to 
know that they perform at a certain level. These apps have a lot of potential, 
but they can also cause a lot of angst and pressure on health care systems.” He 
said that few mobile apps have been clinically validated and regulated as they 
should be, especially if they have diagnostic uses (Chao et al., 2017; Wise, 
2018). Although FDA has proposed some guidelines for evaluating such apps, 
“there are no real quality standards and regulatory framework for them,” he 
said (Chao et al., 2017). He added that there are also ethical concerns related 
to where the data go, who has access to them, how data will be mined, and 
whether the devices adequately protect patient privacy. 

TRANSLATION CHALLENGES 

Several participants described challenges in translating computational 
technologies for clinical use, including ensuring data quality and complete
ness, identifying methods to validate novel computational methods, ensuring 
appropriate regulatory oversight, communicating results and potential risks to 
patients, and achieving appropriate reimbursement under patients’ insurance 
plans. 

Data Quality and Completeness 

Reliable algorithms depend on reliable data, stressed Amy Abernethy, 
chief medical officer, scientific officer, and senior vice president of oncology 
at Flatiron Health.4 She noted that many factors affect the reliability of data 
used to train an algorithm (i.e., completeness, quality, diversity, relevancy, 

4 In February 2019, Dr. Abernethy became Principal Deputy Commissioner of Food and 
Drugs at the Food and Drug Administration. The views expressed in this proceedings do not 
necessarily represent the official views or policies of FDA. 



 

 

 
 
 
 
 
 

           
 
 

       
 
 
 
 

            
 

     
 
 
 
 

 
 

 
 
 

            
 

     
 
 
 

 
 

        

14 IMPROVING CANCER DIAGNOSIS AND CARE 

timeliness, and accuracy. Data completeness requires key data elements such 
as information about cancer diagnosis, treatment, and outcomes. Data qual
ity refers to whether appropriate variables have been measured in valid and 
reliable ways. Another key feature of data quality is provenance, that is, the 
original source of the data and how the integrity of the data was maintained 
as it passed from one record or database to another. Abernethy stressed that 
potential data for precision oncology should be assessed against each of these 
requirements before they are used in any clinical or regulatory context, and 
added that inadequate data quality will result in poorly performing algorithms. 
McShane agreed, and highlighted the importance of involving individuals with 
appropriate expertise to make assessments regarding whether data quality is 
sufficient to be used in the development of algorithms. 

Abernethy noted that different types of datasets have different features 
that affect their reliability. For example, although instrumentation data, such 
as those generated in genetic tests or by imaging, are initially reliable, they 
may be compressed, stored, transferred, analyzed, or reported in ways that can 
introduce error. Often, results from images or tests include textual informa
tion that needs to be curated (translated) into an analytical file that can be 
processed by an algorithm. This curation process can introduce errors if the 
person performing it misunderstands the material or has incomplete, chang
ing, or conflicting information, Abernethy noted. 

Abernethy also stressed the importance of data completeness. She noted 
that electronic health records (EHRs) are often missing key data that need to 
be gathered from other sources. For example, a patient whose cancer progresses 
may have imaging data throughout their treatment, but no pathology data 
after the initial diagnosis. Increasingly, patient data are not considered com
plete without information about biological features important for diagnosis 
and treatment decisions. Levy added that EHRs do not consistently record 
response to clinical therapy or reasons for treatment discontinuation. In addi
tion, she said, “There’s a lot of missing information, especially when you are 
limited by the EHR of a single institution, as we miss what happens to patients 
once they have left the institution, or we’re missing the data that came before 
they are at the institution.” Furthermore, dates entered into EHRs are often 
inaccurate when patients are asked to recall past care episodes that occurred 
at the beginning of their illness. 

Abernethy noted that data reliability can be described for each data point 
in a standardized format. “Standardized reporting of data completeness now 
can be appended directly to datasets, so you have this information in your 
hands as you start to work with them,” she stressed. The creation of research-
ready datasets that are fit for purpose requires documenting data quality, not 
only in source datasets, but also in the derived datasets used for final analyses 
and dataset generation, she added (see Figure 1). 
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FIGURE 1 The process of making a fit-for-purpose real-world dataset.
 
NOTE: RWD = real-world dataset.
 
SOURCES: Abernethy presentation, October 29, 2018; Daniel et al., 2018.
 

Risk of Bias 

Several participants stressed that inadequately representative datasets that 
do not include diverse populations lead to the creation of invalid and biased 
algorithms. Kadija Ferryman, postdoctoral scholar at the Data & Society 
Research Institute, described a study demonstrating how underrepresentation 
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of black individuals in health research data led to the creation of a genetic test 
for heart disease that incorrectly classified risk for black patients (Manrai et 
al., 2016). “A lack of inclusive populations impacts how these genetic variants 
are classified,” Ferryman noted. She gave another example of databases used to 
develop algorithms for melanoma detection that included few images of skin 
lesions in people of African descent (Adamson and Smith, 2018; Lashbrook, 
2018). Ferryman noted that since the passage of the 1993 Revitalization Act, 
which aimed to increase diversity in clinical trials, less than 2 percent of the 
more than 10,000 cancer clinical trials funded by the NCI included enough 
minority participants to meet the goals of the National Institutes of Health 
(NIH) (Chen et al., 2014; Oh et al., 2015). “If this problem of inclusion 
persists, there are still going to be parts of the population that are going to 
be left out” when developing precision oncology algorithms with clinical trial 
data, Ferryman said. 

Ferryman stressed that precision medicine focuses on improving care 
for individuals, but it is also critical to consider its effects on population 
subgroups before these technologies become widespread. “If we don’t address 
these issues at the forefront, it’s likely there will be negative impacts as the 
technologies develop. We need to ensure precision oncology that is equitable 
and leads to improvement for all of us,” she said. 

The need for large and diverse datasets presents a challenge as cancer 
populations are increasingly divided into small subsets based on genomic clas
sifiers. “More and more big data is moving toward small data,” Abernethy said, 
so that there are more datasets that represent small numbers of patients. Small 
datasets run the risk of not being representative of the population. Abernethy 
also noted that the likelihood that patients have genomic analyses of their 
tumors differs by race, ethnicity, and age, and that in itself may affect the rep
resentation of data in available genomic databases (Presley et al., 2018). “This 
is particularly important as we think about getting balance in our algorithms 
going forward,” she said. 

Otis Brawley, Bloomberg Distinguished Professor at Johns Hopkins Uni
versity, also cautioned against drawing population-wide conclusions from 
analyses performed on small samples of population subgroups, noting that 
findings from such analyses may not be generalizable. He gave the example of 
a study of azidothymidine in patients with HIV that concluded the drug was 
not effective in African Americans based on a subgroup analysis embedded 
within the larger study. A deeper analysis identified that the apparent effect 
was confounded by socioeconomic status, and African American patients had 
failed to respond because they could not consistently access the medication. 
Brawley concluded, “You can harm the public health by doing these subset 
analyses just as much as you might be able to help them.” 



  

             
     

 

 
 

    

 
 

  
 

 
 
 
 
 
 
 
 

 
 
 
 
 

 
 

      
 

            
     

 
  

 
       

17 PROCEEDINGS OF A WORKSHOP 

Validation of Computational Precision Oncology 

Prior to entering the market, medical tests need to be validated to ensure 
that they consistently and accurately measure the intended target and provide 
clinically meaningful and actionable information. Some workshop participants 
noted that validation can be especially challenging for omics-based diagnos
tics and imaging, as well as for the predictive algorithms that drive precision 
oncology (IOM, 2012; NASEM, 2016). This creates a bottleneck that can 
slow implementation of new technologies. 

One challenge for validation, identified by Gatsonis, is the “moving tar
get” nature of machine learning algorithms. “The software evolves constantly 
so there’s a big moving target problem,” he said, raising the question “At what 
point do you evaluate such an algorithm? We need criteria for deciding when 
a modality is ready to move forward.” Gatsonis noted that one Institute of 
Medicine report, Evolution of Translational Omics: Lessons Learned and the Path 
Forward, suggests criteria for omics diagnostics, but not for radiomics (IOM, 
2012). Advanced machine learning (i.e., AI) raises additional questions, such 
as whether there has been appropriate training for the algorithm, and how to 
calibrate and monitor its performance. Gatsonis stated, “We need to establish 
processes for monitoring performance and ensuring safety.” He also questioned 
the reproducibility of some omics tests and algorithms, and recommended 
that such tests be evaluated both technically and clinically prior to widespread 
implementation. 

Test Development and Analytical Validation Steps 

McShane outlined steps for developing and validating an omics predictor 
prior to clinical testing (McShane et al., 2013a,b). The first step is ensuring the 
specimen, such as a tumor sample, is adequate for the test. Improper handling 
and storage can affect the quality of the specimen and outcome of the test. The 
specimen also needs to be of sufficient size, and should be screened to ensure 
its DNA or RNA has not degraded. McShane provided the example of a diag
nostic study in which 80 of 100 specimens collected were unusable because of 
improper freezing, and suggested that test developers need to create standard 
operating procedures to ensure proper handling. 

Once a specimen is deemed adequate, the next step is to ensure the test 
itself is run properly and consistently. Small changes in methodology can have 
dramatic effects on results. McShane suggested the use of standard operat
ing procedures and quality monitoring, as well as pre-established criteria for 
assessing specimen quality and batch effects. Researchers also need to assess 
the analytic performance of a test, including its sensitivity, specificity, bias, 
accuracy, precision, and reproducibility (Becker, 2015; Jennings et al., 2009). 



 

 
 

 
   

 
 

 
            

 
 
 
 
 
 

     
  

 
 
 
 
 
 
 

       

              
          

 
 
 
 

     

 

18 IMPROVING CANCER DIAGNOSIS AND CARE 

The next step in test development and validation is to perform prelimi
nary evaluations of the model and algorithm used to make predictions. At this 
step, researchers need to ensure the quality of the data, and use appropriate 
statistical methods for model development, performance assessment, and vali
dation. The latter includes defining the clinical context and patient population 
for the test, and whether its clinical use would be prognostic, predictive, or 
serve another clinical purpose. 

Statistical Validation 

McShane noted that a common pitfall in the early validation steps is 
statistical overfitting, in which an algorithm is trained too closely to a particu
lar set of data, and may therefore fail to fit additional data or reliably predict 
future observations. Overfitting can occur when the data that were used to 
develop a predictor are also used to test it. “Plugging in the same data into the 
model that you used to develop it is a useless thing to do because it will always 
look like you have a great predictor when in fact you might have a completely 
useless predictor,” McShane said. She suggested developers test their assays 
using several different external datasets, as was done for the FDA-approved 
Oncotype DX test,5 which predicts recurrence in women with early-stage 
breast cancer (Carlson and Roth, 2013). 

Parmigiani also stressed the need to perform cross-study validation using 
external datasets. He noted, “If you are training a classifier using a machine 
learning technique, the ability of that classifier to do well on a set-aside piece 
of the original dataset is going to be way too optimistic in predicting what 
is going to happen when you take it elsewhere. That is well established.” He 
added that “if you teach your classifiers on multiple datasets, they will not only 
learn about what predicts patient outcome, but we will also learn about how 
that will vary from one context to another and we will only retain the features 
that are more stable across multiple studies.” 

Parmigiani continued, “The ability to take classifiers trained in one con
text and take them to different contexts is an essential part of the translational 
process that goes from machine learning to bedside,” adding, “This is one of 
the important lessons the clinical community has been learning often the hard 
way over the past few years.” He also noted that the datasets used to train 
algorithms for health care are often much smaller than those used to develop 
other applications, and thus the predictions made by these machine learning 
systems may be less reliable. 

 See https://www.genomichealth.com/en-US/oncotype_iq_products/oncotype_dx/ 
oncotype_dx_breast_cancer (accessed January 4, 2019). 

5

https://www.genomichealth.com/en-US/oncotype_iq_products/oncotype_dx/oncotype_dx_breast_cancer
https://www.genomichealth.com/en-US/oncotype_iq_products/oncotype_dx/oncotype_dx_breast_cancer
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Parmigiani and Steven Goodman, associate dean for clinical and trans
lational research at the Stanford University School of Medicine, also stressed 
the importance of ensuring that validation datasets are unbiased. Goodman 
suggested using real-world data for validation purposes, noting that race, eth
nicity, age, and other factors that may not have been in the eligibility require
ments for the original training dataset may influence validation. He added that 
the validation dataset should include real-world variation in the test procedure, 
including variation in sample preparation, handling, and transport. “You have 
to make sure that your training and validation sets reflect some sort of reality,” 
Goodman stressed. 

McShane outlined in more detail the steps for the rigorous validation of 
a predictor (see Box 3). “There are a lot of really important things that can 
be done with omics. We just have to make sure that we continue to educate 
people on how to do things correctly and have the data resources, time, and 

BOX 3 
Requirements for a Rigorous Validation of a Predictor 

1. Predictor should be completely defined and “locked down,” 
and there should be a pre-specified performance metric. 
Lockdown refers to not varying anything in the test when 
conducting the validation, including all steps in the data
preprocessing and prediction algorithm, and the computer 
code used to create it. 

2.  Ideally, validation should be done using independent data 
generated from specimens collected at a different time or in 
a different place than the original data used to generate the 
test, and according to the pre-specified collection protocol, 
including quality rejection criteria.

3.	 Individuals who developed the predictor should remain
completely blinded to the validation data.

4. The validation data should not be changed, and data values 
should not be selectively eliminated after observing the per-
formance of the predictor. 

5.	 The predictor should not be adjusted (including its cut
points) after its performance has been observed on any part
of the validation data. Otherwise, the validation is compro-
mised, and a new validation may be required. 

SOURCES: McShane presentation, October 29, 2018; IOM, 2012; McShane
and Hayes, 2012. 
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right kind of expertise for validation for successful development and clinical 
translation,” she noted. 

Clinical Validation 

Gatsonis stressed that for clinical validation, algorithms should be evaluated 
in well-designed prospective studies. McShane added that in a clinical trial, study 
methodology and endpoints should be defined a priori, and there should be “an 
honest broker in the form of a statistician or computational specialist, who is 
the one who can make the link to the outcome data and knows the code, even 
if he or she can’t look inside it.” But McShane also acknowledged that it may 
not be possible to design and recruit patients for a clinical trial for every clinical 
validation study. “That’s why we’re going to have to have some very high-quality 
databases and specimen banks, so we can do some of these in very carefully 
designed prospective–retrospective studies,” McShane said. Lukas Amler, senior 
director of the Late-Stage Oncology Biomarker Development Department at 
Genentech, agreed with McShane, noting, “We need very significant scale as 
far as data go.” He suggested that clinical validation for some cancers will likely 
require a combination of real-world data and data from clinical trials. 

With regard to machine learning algorithms that are continually evolving, 
Gatsonis noted that 

we don’t know the way to guarantee that these algorithms are always going 
to hit a minimum level of performance. There’s no math that can specify 
conditions and say this is always going to be the case, hence we don’t know 
that this thing is not going to go off some deep end, depending on what it 
sees and what it learns. That’s why it’s so important that we need to be able 
to understand how they work and have new ways to have minimum perfor
mance standards as the system evolves. 

Gatsonis also suggested establishing processes for monitoring performance 
and ensuring safety. 

Richard Schilsky, senior vice president and chief medical officer of the 
American Society of Clinical Oncology, stressed that tests need to be validated 
for a specific use. “People often lose sight of this. They say ‘I’ve got a great 
technology and it can be used for a million things.’ Well, what should it be 
used for? Because unless you can declare that up front, then it makes it very 
difficult to design the appropriate validation studies,” he said. 

David Chu, president of the Institute for Defense Analyses, suggested that 
FDA could rely more on academic partners for validation of new precision 
oncology technologies because academic institutions should not have a vested 
interest in the product’s outcome. “Think about the academic establishment 
as your partner in this to certify results, including the quality of data used for 
the development of the tools,” he said. 



  

 
   

    
 

  
 
 
 
 
 
 

 
        

 
 
 

    
 
 

  
 
 
 

            
            

  
 

      

 
 

        

 
  

 

21 PROCEEDINGS OF A WORKSHOP 

Face Validity 

George Oliver, vice president for clinical informatics at the Parkland 
Center for Clinical Innovation, stressed the importance of transparency and 
face validity—the perception that an algorithm is taking appropriate compu
tational steps in its decision making. Amler agreed, saying that “A black box 
isn’t going to work. We have to establish causality so there’s enough reason for 
us to follow this up to make current drug treatments better.” Gatsonis added, 
“We care about the face validity in order to be able to educate the physician 
as to what they have seen and why they’re making a particular diagnosis. If we 
can’t do that, we’re not going to be able to convince anybody. You cannot make 
a transparent treatment decision on the basis of a piece of information that is 
not transparent to you.” Gatsonis stressed that algorithms are decision support 
tools, and ultimately the clinician retains responsibility for making the appro
priate diagnosis or treatment selection. Cogle reinforced this notion, stating, 
“If a medical oncologist is legally responsible for using the data in an app, we 
want to make sure we understand how the app or the computational system 
came to the conclusion it did.” Clinicians need to be able to demonstrate the 
face validity of decision support algorithms to justify their prescribing choices 
to insurers, he said. 

However, Gatsonis noted that it can be difficult to achieve face validity 
for complex algorithms. “It is reverse engineering the neural net to be able to 
understand why it did what it did.” Schilsky pointed out that many oncolo
gists use Oncotype DX, a genomic test to inform breast cancer treatment, 
without understanding how its algorithm works. “They accept at face value 
that this is a test that’s gone through an extensive validation process and that 
the recurrence score actually provides information that can be useful to them,” 
he said. Shah added, “We think explaining the algorithm is important but 
should not be rate limiting in creating new knowledge to help patients. We 
shouldn’t be using the black box phenomena as an excuse to put technology 
out of the hands of patients.” 

Gaps in Reproducibility 

Several speakers noted that algorithms for precision oncology often do not 
hold up to repeated attempts at validation. Goodman provided a number of 
explanations for this lack of reproducibility, including factors such as: 

•	 Poor training of researchers in experimental design; 
•	 Increased emphasis on making provocative statements rather than 

presenting technical details; 
•	 Publications that do not report basic elements of experimental design; 
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•	 Coincidental findings that happen to reach statistical significance, 
coupled with publication bias; and 

•	 “Over-interpretation of creative ‘hypothesis-generating’ experiments, 
which are designed to uncover new avenues of inquiry rather than to 
provide definitive proof for any single question” (Collins and Tabak, 
2014, p. 612). 

Goodman added another factor, citing an investigator who had 19 retrac
tions of published research from his laboratory and claimed as his defense: 
“In these days of complex, interdisciplinary research, one depends on the 
trustworthiness of colleagues who use the methodologies with which one has 
no personal experience” (McCook, 2017). As Goodman noted, “This is part 
of the problem. With computational technologies, even the best of clinical 
and biologic researchers may have no idea what is going on in the computer 
and do not know how to look over the shoulders of their colleagues who do 
have this expertise.” He said in one online survey of 1,576 researchers, nearly 
90 percent of respondents agreed that reproducibility of research findings 
could be improved by having a better understanding of statistics (Baker, 
2016). Goodman outlined three types of reproducibility that are relevant in 
assessing precision oncology tests: methods reproducibility, results reproduc
ibility, and inferential reproducibility. 

Methods reproducibility Methods reproducibility is the extent to which 
research methodology is sufficiently described so that a repetition of the 
same experiment would produce the same result. Failure to achieve methods 
reproducibility may be due to a lack of transparency for methods, data and 
codes, and materials used to conduct the research. Achieving this form of 
reproducibility requires providing, in a shareable form, the analytic dataset, 
the methods by which the analytic results were produced, the computer code 
in human-readable form, the software environment, and documentation so 
researchers can try to replicate study results (Peng et al., 2006). 

Results reproducibility Results reproducibility is the degree of support that 
subsequent studies provide for the original claim. 

Inferential reproducibility Inferential reproducibility is whether the results 
are interpreted the same way by different people, that is, whether there is con
sensus in the scientific community about what the results mean. Goodman 
noted that inferential reproducibility is determined by the strengths of claims 
made, and the degree of proof, validation, or generalizability. 
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Regulatory Oversight 

Several workshop participants spoke about the importance of regulatory 
oversight for computational precision oncology and discussed how computa
tional precision oncology’s entry into the clinical market should be regulated. 
“What level of proof or evidence ought there be for computational algorithms 
used as treatment decision supports? Is a randomized trial testing their use 
versus standard of care enough, or do we need a new FDA regulatory mecha
nism for these algorithms?” Newcomer asked. Cogle added, “At what level do 
we have reasonable expectation that this technology is ready for prime time? 
Do we need survival data as a green light or can we use surrogate measures 
for survival?” 

FDA has multiple regulations and standards relevant to omics tests, 
algorithms, and decision support tools, including regulation of digital data 
quality, performance standards for diagnostic tests, and regulation of devices, 
as described below. 

Digital Data Standards 

FDA regularly receives outcomes data from sponsors from registration of 
clinical trials as well as from postmarketing surveillance. To facilitate interpre
tation and use of these data, the agency established data standards through 
the Clinical Data Interchange Standards Consortium6 (CDISC) for all data 
it receives. “Traditionally, we used to get data in a variety of different formats 
that followed a variety of different standards. Every sponsor had their own 
data center,” said Sean Khozin, associate director of FDA’s Oncology Center 
of Excellence. The CDISC standards require a unified framework for organiz
ing study data, including templates for datasets, standard names for variables, 
and standard ways of creating common derived variables. This standardiza
tion allows FDA to receive, process, review, and archive submissions more 
efficiently and effectively (FDA, 2017b). “We can automate a lot of the func
tions during the review process because the data can be linked, and we can 
look at data in a more holistic way by looking across several different studies 
in meta-analyses,” Khozin said, adding, “We are thinking about using the data 
we have to train algorithms that can be open source and help the entire drug 
development community.” 

CDISC is primarily a clinical data standard and does not address genomic 
data. However, Khozin noted that there are also standards for reporting 
genomic data. For FDA purposes, sponsors are asked to provide a spreadsheet 
with all the relevant genomic data outputs. Khozin explained that FDA does 

6 See https://www.cdisc.org (accessed January 4, 2019). 

https://www.cdisc.org


 

 
 

 
 
 
 
 
 
 

         
 
 
 
 

 
 
 

          
 
 
 
 
 
 

          
  

 

 

 

24 IMPROVING CANCER DIAGNOSIS AND CARE 

not acquire the raw genomic data because of the complexities of data trans
mission and lack of technology for analyzing such data as part of regulatory 
decision making. 

Khozin pointed out that as oncology drugs become more targeted and 
effective, fewer participants need to be treated in a clinical trial to demonstrate 
efficacy, although large numbers of patients may still need to be screened to 
identify a subset of patients meeting eligibility for enrollment in the trial. 
“So now there is a greater need to understand the postmarket experience, 
that longitudinal journey of the patient. And that is one of the areas where 
real-world evidence has been very useful and promising—in following the 
patient’s longitudinal journey,” Khozin said. FDA requires long-term patient 
follow-up that varies depending on the nature of the drug and observations 
from clinical testing. FDA also receives spontaneous postmarket reports on 
drugs from clinicians and patients via their website. “We have a continuous 
cycle for postmarket safety surveillance and pharmacovigilance,” Khozin said. 

Devices 

Nicholas Petrick, deputy director for the Division of Imaging, Diagnostics 
and Software Reliability of FDA’s Center for Devices and Radiological Health, 
reported that for regulation purposes, FDA divides devices into three classes 
based on the risk they pose to patients (FDA, 2018a) (see Table 1). 

For all devices, FDA requires sponsors to follow good manufacturing 
practices, register the device with FDA, and report any adverse events. Class I 
devices (e.g., stethoscopes and tongue depressors) pose the least risk, and FDA 
typically does not require safety data for these devices to enter the market. 
Class II devices (e.g., computed tomography [CT], MRI, and ultrasound 
scanners), which are considered to pose moderate risk, may have additional 
requirements, such as postmarket surveillance or premarket data that may 
require a clinical study. Typically, Class II devices are able to enter the market 

TABLE 1 Device Class and Premarket Requirements 
Device Class Controls Premarket Review Process 

Class I 
(lowest risk) 

General controls Most are exempt 

Class II General controls 
Special controls 

Premarket notification 510(k) or de novo 

Class III 
(highest risk) 

General controls 
Premarket approval 

Premarket approval 

SOURCES: Petrick presentation, October 29, 2018; FDA, 2018a. 
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following the 510(k) pathway, which allows sponsors to demonstrate that the 
device is substantially equivalent to a product already on the market. Alterna
tively, Class II devices may come to market via the de novo pathway if there are 
no similar devices already in use, and general or special controls are considered 
adequate for ensuring safety and effectiveness. 

Class III devices (e.g., novel imaging systems, leadless pacemakers, some 
in vitro diagnostic tests, and computer software and algorithms) pose the 
greatest potential risk. Most Class III devices require premarket approval, for 
which sponsors must submit clinical evidence of safety and effectiveness. To 
facilitate identification of the appropriate approval pathway, device makers are 
able to consult with FDA prior to submitting their device for review. These 
consults (called Q-subs) provide an opportunity for FDA to advise manufac
turers on the appropriate regulatory pathway and suggest whether additional 
evidence may be required. “With Q-subs, companies have the opportunity to 
ask questions and get feedback before they delve into a large clinical study and 
potentially get in the wrong pathway,” Petrick said. 

Petrick noted that in FDA decisions regarding validation requirements, 
the indication for a device is equally as important as the type of technology. 
“It is not just ‘here is my device and this is what it does,’ but what are the 
actual intended uses? On what populations will the device be applied? These 
are really important questions that have a large impact on the type of data we 
might see,” Petrick stressed. 

Software as a Medical Device 

Petrick identified a new category of devices that the International Medi
cal Device Regulators Forum (IMDRF) calls Software as a Medical Device 
(SaMD). This software (e.g., machine learning algorithms used to diagnose or 
monitor disease) is intended for medical purposes independent of a hardware 
medical device (IMDRF SaMD Working Group, 2013). Petrick noted that 
many precision oncology tools would be classified as SaMDs. 

In 2017, FDA adopted the IMDRF’s basic principles for SaMDs as 
guidance (FDA, 2017a). The principles for clinical evaluation of SaMDs 
stipulate that there first must be a valid clinical association between the 
SaMD and a targeted clinical condition. Medical literature and professional 
guidelines may be used to establish this association, but it also may require a 
secondary data analysis or a clinical trial. The next step is to demonstrate ana
lytical validity by providing evidence that the software meets various technical 
requirements and specifications. The final component of a clinical evaluation 
is demonstrating clinical validation, that is, evidence that the SaMD has been 
tested in a target population for its intended use and has generated clinically 
meaningful outcomes. 
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Petrick noted that FDA has been regulating SaMDs, especially in imag
ing, for about two decades. Similar to how devices are classified, FDA has 
been regulating SaMDs according to how much potential risk they may pose. 
Bakul Patel, associate director of the FDA Center for Devices and Radiological 
Health, added that when considering how to regulate algorithms, FDA con
siders unknown risks as well as known risks of implementing the technology 
in a clinical setting. 

Petrick pointed out that there is a wide range of SaMDs, including both 
software that will be used by patients in their homes (e.g., software that 
collects and analyzes data about heartbeats and heart rates) and software in 
devices used in the clinic. He noted that software systems for displaying images 
may not require clinical data, but clinical data may be required for devices used 
for diagnosis or treatment (see Figure 2). 

Petrick noted that FDA has received substantial input regarding machine 
learning and AI tools, especially related to imaging, but their approach to 
regulating these technologies is still evolving. The agency hopes to develop new 
guidance for the regulation of SaMDs to meet the influx of new technologies 
expected in the near future. Weichold noted that as FDA builds its knowledge 
base regarding computational algorithms and how best to regulate them, it 
maintains open dialogue with stakeholders. “It’s a learning process and not 
everything is set in stone. We have to learn together,” he said. 

Butte noted that in the past 18 months, FDA approved seven machine 
learning health applications, including one that is cloud based. However, 
McShane suggested that many computationally based tests are not being 
evaluated by FDA because they do not fit in its regulatory framework. Conse
quently, many oncologists rely on NCCN guidelines when deciding whether 
to use these tests in patient care. These guidelines are informed by findings 
published in the medical literature, and McShane expressed skepticism about 
their validity. “We need to be thinking a little bigger about how we might find 
alternative mechanisms to give good evaluations of some of these algorithms,” 
McShane said. 

There was substantial discussion about the regulatory challenges posed by 
modeling algorithms used for clinical decision support. Levy said these algo
rithms should be able to adapt to the latest data and knowledge, noting that 
“Because of the nature of the changing therapeutic landscape within oncology, 
we can’t just go to the FDA with a black box algorithm and say ‘I’m going to 
lock it down forever.’ We need new and adaptive models that allow us to bring 
decision support tools based on knowledge that is ever-changing.” McShane, 
however, expressed concern about this flexibility. She said, 

These algorithms rely on certain input variables, and if those input variables 
are coming from assays that are versioned over time, how does that affect these 
models? As people mine more data and decide to tweak their computational 
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algorithm a little bit so it works better, how do we evaluate those kinds of 
things? I’m concerned there can be drift and we’re never going to know it.” 

Petrick said FDA is wrestling with how to regulate algorithms that continu
ally learn from data extracted in clinical settings. “It may be great to have these 
algorithms change and possibly work better over time, but if I have an algorithm 
specific for the California population, what happens if a clinician using it moves 
to New York?” he asked. Schilsky noted that clinicians want assurance that an 
algorithm can help them make better decisions for their specific clinical context. 

Schilsky asked if software would be subject to regulatory oversight if 
it was used as a clinical decision support tool to select drug treatments for 
a cancer patient based on the results of a multiplex genomic test. Petrick 
responded that FDA would likely want to regulate such an algorithm, and 
would require clinical data to support its use. However, he noted that this 
regulation is still evolving. He said, 

Even if the device is not working completely independently but in conjunc
tion with the clinician, its type of analysis would be something that would be 
regulated and the question is what type of data is going to be needed for that. 
That’s the type of question we are trying to work through now—what types 
of data are needed under what scenarios. 

Cogle noted that FDA requires explicit labels for drugs that include 
indications and mechanisms of action, and asked whether those same labeling 
requirements could be applied to software. He noted that the goal of these 
labeling requirements is to achieve transparency. “Would software developers 
be comfortable putting portions of their code in a prescriber’s label?” Cogle 
asked. Shah responded affirmatively that computer code and data should 
be made publicly available, but he reiterated that traditional regulatory 
approaches may be less relevant for algorithms. 

Quantitative Imaging Devices 

Petrick also discussed assessment of quantitative imaging devices. Quot
ing from the Quantitative Imaging Biomarker Alliance, Petrick stated that 
“quantitative imaging is the extraction of quantifiable features from medical 
images for the assessment of normal or the severity, degree of change, or status 
of a disease, injury, or chronic condition relative to normal” (Radiological 
Society of North America, 2018). Quantitative imaging devices can extract 
a single feature, such as volume measurements, or multiple features from an 
image or from non-imaging data. FDA is currently developing guidance for 
single-feature quantitative imaging measurements, which are not typically 
regulated. “If a company comes in and says ‘I have this tool that can measure 
the size of a lesion,’ as long as that is under the clinician’s control and there are 
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no claims associated with how well it performs, we do not see data on it and it 
just goes into the market,” Petrick noted. He suggested quantitative imaging 
tools could undergo technical assessment and clinical validation, which usu
ally requires a randomized clinical study with patient outcome data. He also 
stressed that the performance of a single marker, such as CT lesion volume 
assessment, should be consistent when the same tool is used at different clini
cal sites and incorporated into devices made by different companies. 

Petrick noted that technical assessment of quantitative imaging devices 
includes evaluation of accuracy and precision. The evaluation of accuracy is 
often complicated by the lack of reference standards against which results from 
the device can be compared. For example, radiologists’ assessments of lesion 
size in a CT image often vary, which makes it difficult to assess the accuracy of 
lesion size determined by a quantitative imaging device. Evaluation of accuracy 
of quantitative imaging may also involve an assessment of statistical linearity, 
which Petrick defined as a measure of how change in the reference reflects 
proportional change in the measurement. Linearity indicates how well mea
surements reflect clinical realities. Petrick noted that assessment of accuracy 
should also include consideration of statistical bias (i.e., the difference between 
the estimated expected value and the reference standard). He noted that bias 
may be acceptable in longitudinal assessments as long as it is consistent, so 
that change observed between two measurements is still accurate. Precision is 
evaluated in the clinical context and involves assessing the repeatability and 
reproducibility of findings when measurements are repeated under the same 
conditions or under types of conditions seen in the clinic. 

Laboratory Developed Tests 

A laboratory developed test (LDT) is “a type of in vitro diagnostic test that 
is designed, manufactured, and used within a single laboratory” (FDA, 2018b). 
LDTs are used often in precision oncology to match patients to appropriate 
treatments. These tests are not currently regulated by FDA,7 but laboratories 
that conduct LDTs are subject to requirements under the Clinical Laboratory 
Improvement Amendments (CLIA), which are overseen by the Centers for 
Medicare & Medicaid Services (CMS) (CMS, 2013). Laboratories conduct
ing LDTs are required to adhere to certain standards and practices to receive 
CLIA certification. Companion diagnostics,8 which are included in drug labels, 

7 FDA has stated that it has statutory authority for the regulatory oversight of all tests used 
in patient care, but has used its enforcement discretion (meaning it has chosen to not exercise 
that authority) for the oversight of LDTs (NASEM, 2016). 

8 FDA defines companion diagnostics as diagnostic devices that “provide information that 
is essential for the safe and effective use of a corresponding therapeutic product” (FDA, 2014). 
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undergo FDA review as part of the regulatory pathway for the drugs with which 
they are used. However, Flaherty noted that for “any other form of diagnostic, 
particularly ones that come post approval of initial therapy, [there is] a woefully 
inadequate system for how to develop and establish them.” Flaherty called for 
strengthened regulation of LDTs, stating, “We need to establish a bar for how 
diagnostic tests need to perform and then we need to raise that bar. We need to 
aspire, at least in cancer, to have LDTs become FDA-approved tests.” 

Patient Privacy 

Deven McGraw, general counsel and chief regulatory officer for Ciitizen, 
reported on the evolving legal landscape for patient privacy. She noted that 
health care privacy is important to patients, and that patients with concerns 
about confidentiality may withhold health information or fail to seek treat
ment. Cancer patients in particular often express concerns about whether their 
health status will affect future employment or their ability to acquire health 
insurance. “There’s a population of people for whom assuring them that their 
data will be kept confidential is really essential to them getting care in the 
first place. These sensitive populations have fears about how that data might 
be used against them,” McGraw said. However, she also noted that privacy 
regulations should still allow legitimate use of data, stating “Privacy is about 
enabling appropriate use of data and good and responsible data stewardship.” 

McGraw noted that privacy laws in the United States and abroad are 
founded on the Fair Information Practice Principles, which were published by 
the Department of Health, Education, and Welfare in 19739 and later incor
porated into the Organisation for Economic Co-operation and Development 
guidelines (OECD, 2013). Those principles include informed consent and 
assurance of autonomous choice for patients with respect to sharing health 
information, as well as safeguards and accountability to ensure that patients’ 
privacy wishes are honored. However, McGraw explained that consent is not 
the overriding principle because it is often difficult or impractical to obtain (e.g., 
in the conduct of retrospective research). Other principles include transparency 
about how data are being used and data minimization (using the minimal data 
needed in order to accomplish a legitimate purpose). De-identifying data, that 
is, stripping it of identifiers, is one way to accomplish data minimization. 

McGraw noted that under U.S. law, it is possible to have informed consent 
waived for some purposes, including retrospective research on large datasets. 
However, most organizations prefer to de-identify data to satisfy privacy require
ments. McGraw explained that there is also a trend for regulators to enable 

See https://aspe.hhs.gov/report/studies-welfare-populations-data-collection-and
research-issues/fair-information-practices (accessed January 7, 2019). 

9 

https://aspe.hhs.gov/report/studies-welfare-populations-data-collection-and-research-issues/fair-information-practices
https://aspe.hhs.gov/report/studies-welfare-populations-data-collection-and-research-issues/fair-information-practices
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individuals to provide generalized consent for the use of their health information 
for future research purposes without the need to specify for which projects those 
data will be used. However, it is unclear how much detail about the nature of 
future research must be included in consent forms, and it can be difficult to 
balance the need to provide details about future research with the need for sim
plicity and conciseness. Other trends in privacy include broadening the defini
tion of “identifiable” or “personal” data and increasing individual rights with 
respect to data (i.e., right to access and portability, right of amendment, right to 
restrict uses, right to withdraw consent, and right to be forgotten). 

McGraw reported on several recent changes in privacy laws, including 
the European Union’s (EU’s) General Data Protection Regulation (GDPR) 
and California’s recent passage of the California Consumer Privacy Act of 
2018 (CCPA). 

General Data Protection Regulation 

GDPR went into effect in the European Union in May 2018. It applies 
only to data “controllers” and “processors” (European Commission, 2016, 
2018). GDPR also covers entities not located in the European Union, but who 
offer goods and services to EU residents or collect data from subjects within 
the European Union. 

GDPR applies to “personal data” unless the data are made public by an 
individual or an individual is no longer living. McGraw reported that GDPR 
defines personal data as 

any information relating to an identified or identifiable natural person (“data 
subject”); an identifiable natural person is one who can be identified, directly 
or indirectly, by reference to an identifier such as a name, an identification 
number, location data, an online identifier or to one or more factors specific 
to the physical, physiological, genetic, mental, economic, cultural, or social 
identity of that natural person. (European Commission, 2016, Chapter 1, 
Article 4) 

There is some relaxation of individual rights provisions when data are 
“pseudonymized” or “coded,” but the GDPR does not define “de-identified” 
data. 

McGraw noted that GDPR uses a broader definition of personal data 
than the Privacy Rule10 promulgated under the Health Insurance Portability 

10 The HIPAA Privacy Rule “establishes national standards to protect individuals’ medi
cal records and other personal health information and applies to health places, health care 
clearinghouses, and those health care providers that conduct certain health care transactions 
electronically.” See https://www.hhs.gov/hipaa/for-professionals/privacy/index.html (accessed  
March 29, 2019). 

https://www.hhs.gov/hipaa/for-professionals/privacy/index.html
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and Accountability Act of 1996 (HIPAA). “It is generally believed this is a 
higher standard than [the HIPAA Privacy Rule], but we don’t know enough 
about how this law is being interpreted by regulatory authorities to know for 
sure that is the case,” McGraw said. Under GDPR, all data processing must 
be “lawful,” with the assumption that consent is required (explicit consent in 
the case of health information) unless there is a lawfully permitted exception. 
Security safeguards are required, but the expectations for those safeguards are 
not set out in detail. A Data Protection Impact Assessment (and in some cases 
regulatory review) is required for certain high-risk processing activities, such 
as health data processed in large volume. GDPR permits pseudonymization 
(replacing personal identifiers with pseudonyms) in order for researchers to 
process data without acquiring consent, but McGraw noted that it is yet to be 
seen how this will be enforced. She pointed out that with GDPR, patients 
not only have the right to acquire their own data, but also have the right to 
acquire data in a machine-readable format, a requirement that is not included 
in the HIPAA Privacy Rule (see Table 2). 

California Consumer Privacy Act of 2018 

CCPA will go into effect in January 2020. The regulation applies to busi
nesses that have gross revenues greater than $25 million, as well as to those 
that buy, sell, or receive large volumes of California consumers’ personal infor
mation (California Legislature, 2018). McGraw noted that many businesses 
located outside of California will be subject to the law. CCPA broadly defines 
personal information as information that identifies, relates to, describes, is 
capable of being associated with, or could reasonably be linked, directly or 
indirectly, with a particular consumer or household. This information includes 
biometric and genetic data. CCPA defines de-identified data as informa
tion that cannot reasonably identify, relate to, describe, be capable of being 
associated with, or be linked, directly or indirectly, to a particular consumer, 
provided that a business that uses de-identified information provides technical 
safeguards, and business practices prohibit re-identification. McGraw said this 
de-identification standard is believed to be stricter than the HIPAA Privacy 
Rule; thus, the HIPAA de-identification standard may not be sufficient for 
future research. 

McGraw noted that CCPA provides some exemptions for health care 
entities, including for limited types of data collected as part of a clinical trial, 
although this is a narrow exemption that does not apply broadly to medical 
research. McGraw also noted that protected health information (PHI) subject 
to HIPAA are exempt from CCPA. However, once data are de-identified 
according to the HIPAA standard, these data are no longer considered PHI 
and lose their exemption to CCPA. To make patient data exempt from CCPA, 
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TABLE 2 Individual Rights Under the General Data Protection 
Regulation and the HIPAAa Privacy Rule 

General Data Protection Regulation HIPAA Privacy Rule 

Right to be 
informed 

Right to 
restriction of 
processing 

Right of 
access/copy 

Right of 
erasure 

Right to 
rectification 

Data 
portability 

Requires detailed disclosures on 
data practices, including information 
collected, purposes for processing, 
categories of recipients, etc. 

Right to get controller to 
restrict processing under certain 
circumstances (e.g., where accuracy 
of data is contested; processing 
is unlawful); required to inform 
downstream recipients unless 
this is impossible or involves 
disproportionate efforts 

Right to know what information 
controller has; right to obtain copies 
(within 30 days; free unless request 
is excessive) 

Also known as the “right to be 
forgotten;” applies if no longer 
basis for lawful processing or other 
reasons; must use reasonable efforts 
to communicate to downstream 
recipients 

Right to obtain rectification 
of inaccurate personal data 
(includes right to have incomplete 
personal data completed through 
supplementary statement) 

Right to receive personal data in 
a structured, commonly used, 
and machine readable format and 
the right to transmit that data 
to another controller without 
hindrance, where processing is based 
on consent and processing is carried 
out by automated means 

Notice of Privacy Practices 
must cover only what entity 
has the right to use/disclose 
individual protected health 
information 

Right to request restriction (no 
requirement to honor except 
with regard to disclosure to 
health plans for services paid 
for in full out of pocket) 

Right to copy (within 30 days), 
but reasonable, cost-based 
fee can be charged for labor 
associated with making the 
copies 

None 

Right of amendment is right to 
“request” amendment; however, 
must honor individual’s right to 
submit her version 

Right to digital copy of 
information maintained 
digitally; right to copy in 
form and format requested 
if reproducible in that form/ 
format 

a Health Insurance Portability and Accountability Act of 1996. 
SOURCES: McGraw presentation, October 29, 2018; European Commission, 2016; 
Federal Register, 2003; U.S. Congress, 1996. 
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health care entities may opt to de-identify data using CCPA’s more stringent 
de-identification standard. 

Communicating Results and Risks to Patients 

Results from genetic analyses and their association with health risks are 
often quite complex. Patients’ interpretation of these results is complicated by 
the prevalence of low health literacy11 and numeracy. Galen Joseph, associate 
professor in the Department of Anthropology, History & Social Medicine at 
the University of California, San Francisco, noted that more than 36 million 
U.S. adults, approximately 20 percent of the population, struggle to read, 
write, or do math above a third grade level (Kutner et al., 2007; Rampey et al., 
2016). Even among a college-educated population, 20 percent of adults cannot 
identify whether 1 percent, 5 percent, or 10 percent indicates a higher level 
of risk (Lipkus et al., 2001). Despite the likelihood that patients and families 
struggle with literacy and numeracy, Joseph noted that clinicians commonly 
overestimate patients’ skills. “Communication is the most common procedure 
in medicine,” Joseph stressed, so it is important that this is done well. 

One component of poor communication between clinicians and patients 
is clinicians’ frequent failures to address patients’ health concerns. Joseph 
described a study on communication of genetic breast cancer risk in which 
she and colleagues identified “a profound mismatch between what the genetic 
counselors talked about and what the women actually wanted to know about” 
(Joseph et al., 2017). Participants were most concerned about their cancer’s 
likelihood of recurrence and whether family members were at risk. By contrast, 
counselors typically spent 45 minutes explaining basic information about 
genetics and describing the patient’s risk for a hereditary condition. Genetics 
was unfamiliar for most of the participants interviewed in the study, and many 
found the information so overwhelming they did not fully engage in deci
sion making about testing. “All that information kind of shut them down,” 
Joseph noted. Health care interpreters also had difficulties with the genetic 
information they were asked to translate for patients. “They were unfamiliar 
with genetics and genomics because that’s not something they’re trained in,” 
Joseph said. 

Joseph also described the design of an ongoing study to evaluate strategies 
for genetic counseling communication (Amendola et al., 2018). Participants 
who elect to undergo whole exome sequencing to assess hereditary cancer risk 
are randomized to receive either traditional counseling or modified counsel

11 Health literacy is defined as the degree to which individuals can access, comprehend, 
and use information and services needed to make appropriate health care decisions (WHO, 
2016). 
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ing focused on health literacy. In the modified counseling arm, counselors use 
simple and direct language that emphasizes connection, and work to build 
rapport between the participant and counselor (see Table 3). 

Many of the decisions made in the course of precision oncology therapy 
require an understanding of risk prediction or probability (e.g., the probability 
that a treatment will work or the risk that a cancer is aggressive). Many fac
tors affect patients’ risk perceptions in addition to numeracy skills, including 
the consequences of the risk information, tolerance for uncertainty, prior 
beliefs about risk level, and cognitive and emotional traits such as pessimism 
or optimism (Lautenbach et al., 2013). Each patient will interpret informa
tion about risk or probability differently depending on these factors, leading 
them to different treatment decisions, Joseph said. She also noted that some 
methods of describing risk are easier for patients to understand. For example, 
most studies of risk communication recommend framing information in terms 
of absolute risk rather than relative risk. 

Joseph concluded by noting that equal access to advanced therapies and 
technologies is not sufficient to ensure health care equity—effective com
munication is necessary for the ethical implementation of precision oncology. 
When considering how to broadly integrate precision oncology into clinical 
practice, the health care community must develop communication strate
gies to ensure that information is interpretable by all patients and clinicians. 
Joseph suggested that strategies for communicating information about preci
sion oncology could be informed by the well-established principles of effective 
clinician–patient communication. These principles include 

•	 Use plain language that is direct, concrete, jargon free, and communi
cated in the active voice; 

•	 Verify patient comprehension; 

TABLE 3 Results Disclosure Communication Approaches 
Traditional Counseling Modified Counseling (Literacy Focus) 

Conceptually and linguistically complex 
• Analogies/hypotheticals 
• Jargon/technical language 

Emphasis on education 
• Detailed genetic information 
• Unidirectional transfer of 


information from counselor to 

participant
 

Conceptually and linguistically simplified 
• Direct/concrete 
• Lay/plain language 

Emphasis on communication and 
psychosocial counseling 
• More dialogue/participant engagement 
• Focus on relationship building 


(rapport/empathy)
 

SOURCES: Joseph presentation, October 29, 2018; Joseph et al., 2017. 
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•	 Adapt communication and documentation for the patient’s literacy and 
numeracy; and 

•	 Take responsibility for communicating understandably to patients 
because clinicians, not patients, are responsible for effective 
communication. 

Challenges for Payers 

Newcomer described challenges that precision oncology poses for health 
care payers. He noted that although the cost of genomic sequencing has 
declined, the cost of many targeted drugs has not. Some payers that cover the 
cost of tumor genomic sequencing may not cover therapies indicated by 
the genetic markers identified. Payers are particularly concerned that reimburs
ing treatments based on tumor mutation rather than cancer type will set a 
precedent that is considered a new coverage policy, and that this will lead to 
expectations of drug reimbursement even in cases where there is no clinical 
evidence of the drug’s efficacy. Newcomer said insurance payments are highly 
regulated and expected to be consistent. If a medication to treat a particular 
cancer is covered by an insurer for one patient, it must be covered for other 
patients as well. 

To address the problem of missing evidence of clinical efficacy, Newcomer 
suggested a proof-of-concept clinical trial in which all patients would have 
genomic analyses of their tumors. The control group would be randomized to 
receive the standard of care, including any FDA-approved therapies for treat
ment of cancers with the identified mutations. The experimental group would 
receive any therapy targeting the mutations identified, regardless of whether 
there was clinical evidence to support that choice of therapy. Newcomer noted 
that if outcomes in the experimental group surpassed those in the control group, 
it would provide evidence to support the selection of therapies based on tumor 
mutation in the absence of other clinical trial data, and would establish a path 
toward payer coverage for such therapies. Michael Kelley, national program 
director for oncology for the Department of Veterans Affairs (VA), suggested 
that clinical data from the VA could be used to conduct a retrospective proof-of
concept study that would approximate the clinical trial suggested by Newcomer. 

Newcomer noted that the complexity of genomic sequencing tests also 
presents a reimbursement challenge for precision oncology. He explained that 
compensation for clinical laboratories traditionally has been based on a model 
of low cost and high volume. Genomic tests challenge this model because of 
the time and expertise required for the interpretation of results. Newcomer 
said that interpretation of genomic sequencing results can require as much as 
a full day’s time by a Ph.D. scientist, yet there is no existing mechanism to 
bill for this effort. Newcomer stated, “We have to think about how we define 
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complex decision support systems and what we pay for them if we’re going to 
see this field continue to progress.” 

McLeod agreed that reimbursement for complexity will be a key driver 
of the integration of precision oncology in clinical care. He added that 
reimbursement policy could provide incentives to reduce complexity of diag
nostic readouts provided by new technologies. As an example, he noted that 
the readouts for electrocardiogram machines have become simpler as the 
technology has progressed, with much of the complexity of interpretation 
accomplished by the machine rather than the clinician. Levy added that 
unless the complex tests are being performed and interpreted at the same 
institution, as they are at Intermountain Healthcare, there is no way to recoup 
the expense of providing molecular interpretation services. “The only way 
we can get reimbursed for these types of things is to actually lay hands on 
the patient and see them in a clinical environment. There needs to be some 
way to facilitate reimbursement so that new decision support tools can be 
developed,” Levy said. 

Newcomer responded that a value-based reimbursement model would 
incentivize precision oncology as a method of identifying effective therapies, 
and would circumvent the need to find payment within a fee-for-service 
paradigm. He said that bundled care could provide financial support for 
these computational tools “because if the tools you use lead to more efficient 
care, the decision support algorithms would be paid for by the shared savings 
component.” 

Newcomer also suggested that claims data could be used for post-approval 
surveillance. He noted that claims data can be used to follow a patient over 
time, and can serve as powerful tools to study effectiveness and cost-of
treatment regimens if integrated with clinical data. “Think about claims as a 
tool to integrate into our decision-making process because it gives us a longi
tudinal record you can’t get anywhere else,” Newcomer stressed. 

Oliver suggested implementing payer-supported, data-driven quality 
improvement methods in health care systems, akin to what is done in the 
CMS Innovation Center’s Oncology Care Model. These initiatives could 
include metrics that provide positive feedback and financial rewards for clini
cians and health care systems that adhere to quality standards. Joseph Chin, 
deputy director of the Coverage and Analysis Group at CMS, suggested that 
CMS could drive adoption of computational decision-making tools by reim
bursing their costs, similar to how CMS reimburses costs for shared decision 
making prior to lung cancer screening. “Once these tools are available and vali
dated, there are mechanisms for a payer to encourage their use by providers,” 
he said. Chin also noted that CMS has used coverage with evidence devel
opment to encourage the collection of data through registries. For example, 
some reimbursement decisions for cardiology and radiology are tied to health 
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care providers submitting data into registries for subsequent follow-up. These 
registries are linked to CMS administrative data. 

RESEARCH NEEDED 

Workshop participants discussed numerous evidence gaps that limit the 
clinical application of computational precision oncology. Many clinicians 
expressed frustration that genomic findings often identify genetic defects for 
which there are currently no effective treatments. “Most genomic results are 
still not actionable,” Schilsky stressed, noting that FDA lists only 11 genomic 
alterations as actionable, a small percentage of the more than 500 variants 
found in some genomic profiles (Lee et al., 2017). Flaherty noted that only 
35 percent of genetic defects detected in the NCI MATCH trial could be 
treated by either an approved or experimental drug. He added that some 
genes, such as tumor suppressor genes, are known to play a major role in 
multiple types of cancers, but there are no available treatments to target them. 
McLeod asked, “If we don’t have good options for patients based on whatever 
it is we’re measuring in them, why are we doing it at all?” 

McLeod noted that a retrospective study of patients with advanced 
non-small cell lung cancer identified no statistically significant difference in 
12-month mortality between patients who underwent broad-based genomic 
sequencing and those who underwent routine genetic testing (Presley et al., 
2018), although a difference in survival was observed at cancer centers that 
offered access to diverse clinical trials. Cogle described additional limitations 
of molecularly targeted therapy identified in the SHIVA trial, which enrolled 
patients with advanced solid tumor cancers for whom standard-of-care therapy 
had failed (Le Tourneau et al., 2015). All participants in the trial received 
large-scale genomic testing, and were then randomized to receive either a 
molecularly targeted agent or a treatment of their physician’s choice. However, 
there was no molecularly targeted treatment available for more than half of the 
trial participants. Furthermore, there was no statistically significant difference 
in survival between the treatment arms. 

Flaherty noted that insufficient understanding of the molecular pathways 
driving cancer partly explains the small number of actionable genetic muta
tions and the lack of documented long-term effectiveness of targeted therapies. 
He said that research is at the early stage of understanding heterogeneity of 
response across cancer types that share common molecular features. Flaherty 
pointed out a number of biological factors that continue to make treatment 
response unpredictable and require more research to elucidate. These factors 
include epigenetic changes that affect gene expression but are not identified 
in genomic tests, as well as compensatory molecular signaling mechanisms 
that allow cancer cells to resist treatment (e.g., switching to a different form 
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of metabolism that does not rely on the target inhibited by a treatment). 
Additionally, the immune response and other tumor microenvironment fea
tures influence treatment outcomes in ways that are not fully understood. 
Flaherty noted, “We have all these other mediators of drug resistance that were 
really unanticipated and not modeled in preclinical systems.” He added, “The 
downstream consequences of these drugs are complex to say the least, which 
heightens the challenge of trying to predict outcomes at the individual patient 
level.” When trying to understand variability in treatment response, it would 
also be helpful to have patient tumor biopsies when their disease progresses 
while being treated, Amler suggested. 

More research is also needed on how therapeutic agents can be combined 
to maximize their efficacy. Flaherty said there is a need both for additional 
drugs and for diagnostic tests that can identify effective drug combinations 
for individual patients. Amler agreed, noting the importance of developing 
diagnostics that can predict appropriate treatment combinations. “We’re com
mitted not just to developing drugs, but also the means for clinicians and their 
patients to actually do something meaningful with them,” he stressed. 

Levy said there will be a growing need for implementation research as 
computational precision oncology becomes more common in clinical practice. 
She called for further assessment of factors associated with implementation, 
noting that clinical research on therapeutic efficacy and safety is held to a high 
standard, while factors associated with implementation (e.g., decision support) 
are often ignored. Levy suggested conducting pragmatic studies to assess the 
impact of decision support tools, and noted that she is currently conducting 
a randomized, prospective study of a tool used to match cancer patients to 
clinical trials. Weichold also suggested designing more pragmatic and adap
tive clinical trials in order the bridge the gap between clinical research and 
real-world clinical care. “We cannot continue to separate the two and conduct 
clinical trials in a bubble,” he said. 

Parmigiani noted that an essential step in validating and translating com
putational algorithms is to take classifiers trained in one context and apply 
them to a different setting (e.g., a different genetic population). This process 
will reveal variability in performance driven by patient characteristics, data 
collection characteristics, and characteristics of the biological assay. “There is 
always going to be some variation across studies and it’s important to under
stand this variability because it often contributes genuine scientific insights,” 
Parmigiani said. He suggested that validation not be viewed as a binary process 
that an algorithm either passes or fails, and noted that even failures of valida
tion can provide valuable information. 

Khozin agreed, noting even if there is only one response to a treatment 
out of 1,000 patients, that one response is likely a real effect of the therapeu
tic agent. He suggested that most advanced tumors “do not shrink just by 



 

 
 
 
 
 

              
 
 
 
 

       

 
 

 
 

  
     

 
 

 
 
 
 
 

  
 
 
 
 
 

 
 
 
 
 

40 IMPROVING CANCER DIAGNOSIS AND CARE 

chance.” Khozin noted that such findings from exceptional responders should 
be further studied. McShane agreed, stressing the importance of studying why 
some patients also have exceptionally toxic or negative responses to drugs. “We 
have an obligation to not consider our job done just when we’ve put out our 
first computational algorithm. We need to go back to these data and mine 
them for things that are not easy to study prospectively,” she said. Shah agreed, 
adding that prospective adaptive clinical trials can be used to enrich patient 
populations with rare genetic variants. Parmigiani added, “The general concept 
is that a substantially increased degree of adaptivity is what is needed to come 
to much smaller patient strata that are much more homogeneous and where 
the level of prediction is much more accurate.” 

EXAMPLES OF CARE DELIVERY MODELS FOR
 
COMPUTATIONAL PRECISION MEDICINE
 

Several participants discussed care delivery models for computational 
precision medicine, including models that have been implemented at the 
Moffitt Cancer Center, Intermountain Healthcare, the VA, the University of 
California, and the Vanderbilt–Ingram Cancer Center. 

Moffitt Cancer Center Precision Oncology Program 

McLeod reported that the Moffitt Cancer Center built its own precision 
oncology system to provide clinicians with genetic information about patients’ 
tumors. This information is represented graphically, numerically, and qualita
tively to aid treatment decision making. McLeod said a critical component of 
Moffitt’s system is its molecular tumor boards, which are composed of multiple 
physician specialties, including radiologists, pathologists, and oncologists, as 
well as genetic counselors and bioinformaticists. These boards meet regularly 
to discuss patient cases and can provide recommendations for patient care 
management on request. 

Moffitt also has a quality improvement pilot to guide drug selection and 
dosing by identifying patients with a genetic predisposition to adverse drug 
effects. McLeod noted that the goal of the pilot is to reduce adverse drug effects 
and improve the quality of patient care, as well as reduce the costs associated 
with treatment toxicities. The system is assessed on a monthly and biannual 
basis, and results are used to guide improvements and inform long-term analy
ses. Metrics of the assessment include the number of patients who saw genetic 
counselors; to what extent genetic testing altered therapy choice; the incidence 
of neuropathy and cardiovascular toxicities; net revenue or financial loss from 
the pilot; and patient and clinician feedback on the testing process and quality 
of care. “Quality improvement is needed to find the right fit for your health 
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system,” McLeod noted. He added that “rational therapeutics, risk mitigation, 
and budget impact analysis endpoints will really help us go forward in terms of 
quality of care, but also influence our payer strategies. Payers are interested in 
data and want to make good decisions, so they can be good partners on this.” 

Intermountain Healthcare Precision Oncology Program 

Nadauld reported on the Intermountain Healthcare system for preci
sion oncology decision support. Intermountain is composed of 23 hospitals, 
180 medical group clinics, and nearly 1 million patients insured by its health 
plan. Patients do not need to be covered by its health plan to be treated 
atIntermountain facilities, nor do clinicians need to be employed by the system 
to practice in its clinics and hospitals. 

Nadauld noted that Intermountain followed a workflow map when imple
menting its precision oncology system (see Figure 3). Genomic sequencing is 
performed internally to decrease turnaround times and improve data quality 
and cost control. For every patient’s tumor, Intermountain provides a listing 
of all relevant mutation types in 165 genes. 

After a survey revealed that clinicians were uncomfortable interpreting the 
data provided by this tumor analysis, Intermountain established an internal 
molecular tumor board that also includes external experts. This board meets 
regularly to review each tumor sequencing test ordered and performed within 
the Intermountain system. The board’s interpretation of the genetic analysis is 
presented in a report that identifies findings salient for treatment decisions. For 
example, the report recommends appropriate drugs and lists them in order of 
priority. More detailed information is also provided later in the report for clini
cians who find it useful. “What they really want is right there on the front page, 
and we even include an order button so that if the doc liked the gene–drug 
match that they saw, they could go ahead and order the drug and we would 
engage a drug procurement team to help obtain that drug,” Nadauld said. 

To assess the efficacy of its precision oncology approach, Intermountain 
identified patients with advanced cancer and compared outcomes between 
patients who received standard next-line therapy and those who received 
genomic testing and targeted therapy. This study found that patients in the 
precision oncology group had nearly double the overall survival rate compared 
with patients given standard therapy (median overall survival of 52 weeks 
versus 26 weeks) (Haslem et al., 2018). Furthermore, the cost of treatment 
per week of survival was lower in the precision oncology group than in the 
standard therapy group. Compared with those receiving standard therapy, 
patients in the precision oncology group also had lower overall costs in the last 
3 months of life. Outpatient drug costs were 300 percent higher in the 
precision oncology group, although some of this additional cost was offset 
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by savings from reduced inpatient hospital events. Based on these findings, 
Intermountain’s health plan changed its policy to cover payment for molecular 
testing in patients with advanced cancer. 

Nadauld noted that Intermountain’s precision oncology efforts have been 
informed by its biorepository of 150,000 patient tumor samples that are 
linked with clinical outcomes data. Intermountain recently launched a high-
throughput sequencing center with the capacity to analyze 20,000 genomes 
per year. He said they are 

now in the process of pulling samples out of our biorepository, doing the 
whole-genome analysis, combining that with the clinical outcomes, and then 
making predictions about how to treat future patients based on what has hap
pened to past patients, using a variety of AI tools to better understand and 
characterize these different patient cohorts. 

Department of Veterans Affairs’ National Precision Oncology Program 

Kelley reported on the VA’s National Precision Oncology Program, which 
began in 2016. In this program, patients’ solid tumors are tested for variants of 
20 genes. The agency has recently started screening blood cancers as well. More 
than half of all VA centers now offer this testing. Together, they are genetically 
analyzing nearly 1,000 tumor samples every quarter. 

Kelley said the test results suggest FDA-approved “on-label” treatments 
for only 8 percent of patients. Nearly half of the treatment recommendations 
are for “off-label” therapies, for which there is no clinical evidence of efficacy. 
He said the VA does not have many clinical trials in which to enroll these 
patients, and is currently trying to increase the opportunities to offer off-label 
treatments in clinical trials by collaborating with the NCI and other partners. 

Kelley noted that in addition to genomic testing, the VA employs an on-
demand and patient-specific electronic consult service that is facilitated by its 
unified EHR system. This service allows clinicians to seek advice on patient 
care from multidisciplinary teams that consider a patient’s entire clinical con
text and provide recommendations with 72 hours. The VA also has a molecular 
tumor board, as well as a genomic medicine service that provides telehealth 
genetic counseling for patients found to have germline genetic alterations. 

Kelley noted that the data from the VA’s genomic sequencing vendors 
is provided to the patient’s clinicians and placed into a central database (see 
Figure 4). This database allows the VA to augment genomic results with data 
on drug exposures, clinical response, and other patient elements. 
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FIGURE 4 Department of Veterans Affairs’ National Precision Oncology Program
 
data flow.
 
NOTES: FASTQ is a sequence file format. PDF = portable document format; VCF = 

variant call file. 

SOURCE: Kelley presentation, October 30, 2018.
 

University of California 

Butte reported on the University of California’s health data research 
effort, funded by the Chan Zuckerberg Initiative, that is working to integrate 
precision medicine in clinical care. He said that all 10 University of California 
campuses are partnered with UnitedHealth Group, with the plan to combine 
the campuses into a single accountable care organization over the next decade. 
This merger will require standardizing health care data from six University of 
California medical schools and health care systems. Four of the six health care 
systems use Epic for EHR data. These health records are harmonized using a 
translational research platform called Informatics for Integrating Biology and 
the Bedside, and placed into a central database. At a Center for Data-Driven 
Insights and Innovation, the EHR data are combined with limited financial 
data, state regulatory data, claims data, and death registry data (see Figure 5). 

Butte reported that the University of California, San Francisco, conducts 
its own genomic testing, but patients may also have testing performed by 
a private facility. An optical character recognition code enables computer
ized reading and processing of both internal and external genomic reports. 
University of California researchers use these genetic data in research, includ
ing genome-wide association studies, deep-learning models for image-based 
diagnostics, and predictive models for drug efficacy. To facilitate research, the 
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46 IMPROVING CANCER DIAGNOSIS AND CARE 

Observational Medical Outcomes Partnership Common Data Model12 is used 
to create standardized de-identified datasets. 

Vanderbilt–Ingram Cancer Center’s My Cancer Genome 

Levy reported on the Vanderbilt–Ingram Cancer Center’s My Cancer 
Genome, which curates the clinical significance of genomic alterations in cancer. 
This knowledge-driven, Web-based application for clinicians, patients, caregivers, 
and researchers gives up-to-date information on mutations that drive cancers 
and the related therapeutic implications. Users can search for mutation-specific 
treatments and clinical trial options locally, nationally, and internationally. 

Since 2010, the system has incorporated the genetic profiles of tumors 
from more than 8,000 patients. Of those, more than 900 patients went on 
genomically informed interventional clinical trials. “We consider that to be a 
huge success based on the fact that we’ve largely been sequencing patients who 
have metastatic disease,” Levy said. 

LESSONS LEARNED FROM IMPLEMENTING
 
COMPUTATIONAL PRECISION ONCOLOGY CARE
 

Several participants provided lessons learned from implementing compu
tational precision oncology care. These lessons include the need for strategic 
and financial support, a patient-centered and clinician-friendly design, stan
dards, and multidisciplinary teamwork. Other lessons concerned the need 
to improve clinician understanding of omics and analytics, share data, and 
implement regulatory and payer measures that could help foster translation 
of computational precision oncology into the clinic. 

Financial Support 

Several participants discussed the need for institutional financial support 
in the implementation of computational precision oncology, including funds 
for establishing and maintaining databases, conducting validation studies, 
and developing health care systems that can seamlessly integrate precision 
oncology data. 

McShane noted that although the NCI has worked to establish databases 
for precision oncology, the effort has been complicated by the lack of resources 
available for the creation and maintenance of these databases. She stated, “If we 

12 See https://www.ohdsi.org/data-standardization/the-common-data-model (accessed 
January 8, 2019). 

https://www.ohdsi.org/data-standardization/the-common-data-model
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want good quality data and we want to really capture a lot of data, somebody 
has to pay for that. Even the preparation of a dataset to put into one of these 
data archives requires time and resources and we’re not paying well for that.” 

Parmigiani said it can be difficult to identify expertise and financial 
resources for validation of computation methods. “Replicability and repro
ducibility are extremely expensive and difficult to do. It is a resource-intensive 
enterprise,” he said. Gatsonis recommended additional financial support for 
validation and development, noting that these efforts are supported primarily 
by NIH funding and venture capital. 

Oliver stated that securing ongoing investment from philanthropic, 
governmental, or pharmaceutical organizations will be a key factor in the 
successful implementation of computational precision oncology in health. 
He described his institution’s investment in a nonprofit focused on the 
implementation of prescriptive analytics and machine learning applications 
in clinical care. “We have investments in IT [information technology] data 
architects, data scientists, statisticians, and clinical investigators, who are 
all brought under one roof,” Oliver added. He said financial incentives will 
drive the field of computational precision oncology, and that leadership at the 
executive level of organizations can also “help bring focus to the problem.” 
McLeod added, “Financial and strategic support from leadership is very 
important and they have to be able to see that spending a dollar will save 
them money or will give them market advantage, or in some way make it 
worthwhile going forward.” Butte agreed, saying, “It’s amazing what you can 
do when the health system CEO gets what you’re trying to do.” 

To avoid future expenses and efforts, McLeod suggested that precision 
oncology systems should be flexible to accommodate new information and 
technologies. He noted that precision medicine has been structured around 
the implementation of genomics in oncology care. However, if new tools such 
as metabolomics and proteomics become more widespread, systems will need 
to incorporate new types of data. 

Patient-Centered and Clinician-Friendly Design 

Workshop participants discussed the importance of designing computa
tional precision oncology applications that are user friendly for both clinicians 
and patients. Noting that the burden posed by EHRs contributes to clinician 
burnout, Levy stated that it is important to design precision oncology systems 
to fit into the workflow of clinical care. She suggested that precision oncology 
systems should be evaluated not only for their ability to improve care out
comes, but also for their harmony with clinical workflows. Oliver added that it 
is helpful to implement new clinical systems in stages so they can be validated 
and calibrated prior to full deployment across a health system. 



 

 
 
 
 

    
 

  
 

      
 

 
 
 

          
 
 
 
 

  
 
 
 
 

          
      

 
 
 

             
 

 
           

 
 
 

48 IMPROVING CANCER DIAGNOSIS AND CARE 

Patrick-Lake stressed the importance of ensuring that patients remain at 
the center of computational precision oncology, and suggested that patients 
should be engaged in the development of new analytic strategies. She noted 
that engagement is “a bidirectional relationship that creates mutual benefit,” 
and that developers should use patient expertise and return value to patient 
populations whose data are used to create precision oncology techniques. 
Patrick-Lake suggested these goals can be achieved through the development 
of patient-centered strategic plans that are supported with adequate resources 
and include measures of desired outcomes. 

Patrick-Lake also expressed concern about racial and ethnic disparities, 
and stated that it is important to investigate the fundamental causes of minor
ity underrepresentation in datasets used for precision oncology. She sug
gested that one cause of minority underrepresentation is the perceived lack of 
empowerment during interactions with health care systems, and she suggested 
that patient advisory groups and patient advocates could help to engage diverse 
patients and communities and to reengage groups that feel disenfranchised. 

Cogle also advocated for patient-centered development and application of 
computational precision oncology, and noted that patients’ concerns are often 
different from those of their clinicians. He suggested that patients could be 
engaged in the design and implementation of computational precision oncology 
tools to ensure they address outcomes important to the patient. McLeod said one 
outcome important to patients is treatment toxicity, noting that it is a frequent 
reason for stopping therapy. He suggested that clinicians should devote greater 
attention to toxicity and its effect on quality of life. McLeod noted, “We need 
to have more of a focus on the patient and what their goals are if we’re going 
to achieve precision medicine goals, beyond just having a fancy technology.” 

Khozin noted that although patients’ clinical outcomes are the ultimate 
measure of therapeutic value, current regulation of diagnostics and treatments 
is focused on the product, not the patient. For example, each of the three 
phases of premarket drug development, as well as the postmarket phase, use 
a different sample of patients. Khozin suggested reconfiguring this evalua
tion platform to align it with the longitudinal experiences of patients. “If we 
are interested in the patient’s journey, why not follow the same patient from 
the time that they enter the clinical trial until the postmarket phase of clini
cal development? If we do this right, hopefully we will have a development 
paradigm that is patient oriented instead of product oriented,” Khozin said. 

Informed Consent 

Several participants suggested simplifying the consent process within 
oncology, noting that long and complex informed consent documents fail to 
communicate important information to patients. David Magnus, Thomas A. 
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Raffin Professor of Medicine and Biomedical Ethics, professor of pediatrics 
and medicine, and director, Center for Biomedical Ethics, Stanford University, 
suggested that the research community needs to reevaluate the way it com
municates with patients, noting that written communication is insufficient for 
communicating complex information to patients. He said, “We need to go 
back to square one in terms of how we communicate with patients, knowing 
it is going to be imperfect, but the question is what are the different ways we 
can use informed consent and other tools to demonstrate respect for patients.” 
He suggested that innovative strategies such as illustrated comics and videos 
tend to be more effective. McGraw agreed that the framework for informed 
consent should be revised, and suggested that presenting patients with a nearly 
unintelligible consent form fails to honor their contributions to research. 

Schilsky said that the range of potential outcomes from precision oncol
ogy is often not communicated clearly and that patients often do not under
stand the potential limitations of genomic analysis, including the possibility 
that analysis will identify tumor mutations for which there are no therapies 
with demonstrated clinical efficacy. “We have to take some responsibility as 
a community for setting the record straight on where we are in precision 
oncology and conveying that clearly to patients,” he said. 

Improve Clinician Understanding of Omics and Analytics 

Butte, Schilsky, and Cogle noted that precision oncology reports are 
complex and may be confusing to clinicians who have not had sufficient 
training. Cogle said there is often a 6-month learning curve before medical 
oncologists begin to accept an algorithm’s recommendations for effective 
therapies. Chu suggested that medical schools should offer additional train
ing on statistics and data analytics to better prepare clinicians to interact 
with computational systems. Oliver agreed, and suggested updating medical, 
nursing, and paraprofessional curricula to include training for understanding, 
evaluating, and applying predictive models. Petrick added that clinicians need 
to be trained in how to interact with AI so they understand its limitations. 
Hricak agreed, saying, “That’s why we call it augmented intelligence and not 
artificial intelligence.” 

Standards 

Workshop participants suggested several ways in which greater standard
ization could improve the field of computational precision oncology. These 
suggestions included standardization across databases and system interoper
ability, the development of standards for validating new technologies, and the 
development of standards for cancer genomic testing. 
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Abernethy said that policies should help to ensure that datasets are accu
rate, complete, and incorporate relevant data types; that there is transparency 
about data reliability and quality; and that data outputs of algorithms are 
accurate. She also suggested creating standards for documenting reliability, 
quality, and accuracy at the level of the data source, dataset, and algorithm. 
Weichold stressed that “data quality, authenticity, and provenance are critical 
and we need to work together now to solve those problems.” He suggested 
developing consensus data standards with the support of stakeholder organiza
tions, such as the Institute of Electrical and Electronics Engineers, and noted 
the BioCompute Object standard that FDA is in the process of developing. 
“We are struggling the most right now because we do not even understand 
the evidence that we are using to feed machines because we don’t have the 
opportunity to link it back to the source data,” Weichold said. 

Standards for interoperability are also needed, Oliver stressed. He said 
some efforts already have been made in this regard, including the Fast Health
care Interoperability Resources13 and Health Level Seven International.14 The 
former is a Web interface standard for which users can request all the labora
tory data on a patient, for example, assuming the patients’ health care system 
has entered those results into the resource with a link to standard ontology 
such as Logical Observation Identifiers Names and Codes. “Most haven’t and 
so there are existing barriers to this,” he said. 

A few participants emphasized the need for consistent evidence standards 
for data and interpretation in computational precision oncology. Oliver noted 
that although his institution has defined its own standards for evidence, other 
institutions have different standards, which makes it difficult to share resources 
when building analytics. Levy and Kelley agreed with the need for a standard
ized level of evidence framework, and Levy noted that “we clearly aren’t all 
talking about the same frameworks when we’re having these conversations.” 

Newcomer stressed the importance of validation standards for compu
tational algorithms. “They are not a drug, but don’t we want the same thing 
that we ask of drugs from these computational black boxes? We would like to 
know that when we use it, it will not cause harm, and more importantly, it will 
help us deliver the best possible care for that particular patient,” he said. Chin 
agreed, stating, “We want to see evidence on clinical utility—that using a test or 
computational method associated with those tests would actually improve health 
outcomes.” This is what CMS requires for coverage of interventions, he noted. 

Oliver suggested that quality performance standards, such as the Health
care Effectiveness Data and Information Set or similar standards, could 
include a recommendation that everyone at age 40 or older be offered genetic 

13 See https://www.hl7.org/fhir/overview.html (accessed January 8, 2019). 

14 See http://www.hl7.org/about (accessed January 8, 2019).
 

https://www.hl7.org/fhir/overview.html
http://www.hl7.org/about
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testing for cancer risk. This could help build the evidence base needed for 
validation studies that would put genetic risk assessment on firmer footing. 
Amler pointed out that making genetic testing a standard of care for patients 
diagnosed with cancer would also provide evidence that could be used to 
validate diagnostics, decision support tools, and new targeted therapies. Such 
standards might also facilitate the entry of patients into clinical trials because 
many of these trials require such testing. “We need to have comprehensive 
testing everywhere,” Amler said. 

Data Sharing 

Several participants noted that computational precision oncology requires 
large and inclusive datasets that can only be created via data sharing. Cogle said 
that health systems are increasingly participating in data-sharing consortia that 
will facilitate access to the massive datasets required for precision oncology, and 
he suggested that state-based consortia could be joined in an even larger data-
sharing effort. Levy discussed a number of data gathering and data-sharing enter
prises relevant to precision oncology, including Project GENIE15 (Genomics 
Evidence Neoplasia Information Exchange) as well as several for-profit compa
nies such as Flatiron Health, Foundation Medicine, and Tempus. She also noted 
the growth of patient-driven data-sharing initiatives, such as Count Me In16 

and the Memorial Sloan Kettering Make-an-IMPACT initiative,17 which allows 
patients to share their clinical and molecular data to advance medical research. 

Abernethy suggested that there are also many types of real-world datasets 
that could be used for precision oncology, including imaging, instrumentation 
data generated by machines, EHR or administrative data, and patient-recorded 
data. However, unless these health data can be de-identified, they may not be 
sharable. Medical images, for example, are hard to de-identify. “You have to 
decide how you are going to deal with that in an appropriate way if you want 
to store and reuse images over time,” she said. Abernethy also stressed that 
researchers and clinicians need to be aware of the security of datasets, and 
ensure that data security is maintained as data are moved among databases. 
Butte noted that the HIPAA Privacy Rule regulations on data sharing are 
much less stringent for data from patients who are deceased. “We can collect 
a lot of more of this data and share what we know,” Butte said. 

15 See https://www.aacr.org/Research/Research/pages/aacr-project-genie.aspx (accessed  

16 See https://joincountmein.org (accessed January 8, 2019). 
 

January 8, 2019). 

See https://www.mskcc.org/research-programs/molecular-oncology/make-impact 
(accessed January 8, 2019). 

17

https://www.aacr.org/Research/Research/pages/aacr-project-genie.aspx
https://joincountmein.org
https://www.mskcc.org/research-programs/molecular-oncology/make-impact
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Large-Scale Public Databases 

Several speakers noted the value of creating large, comprehensive, and 
shareable databases for precision oncology. Oliver suggested that data gener
ated in the course of routine clinical care could be pooled to create a “data 
commons.” Kelley agreed, saying, “We need to be able to develop the knowl
edge base in a public way. There are lots of people who have siloed their anno
tated databases and it would be very helpful to have a public knowledge base 
about which genetic variants are pathogenic.” He pointed to Project GENIE 
(see Box 4) as well as the Clinical Genome Resource (ClinGen)18 and the 
ClinVar19 database as examples of public databases. Oliver added that the All 
of Us Research Program and the UK Biobank20 are also examples of projects 
with publicly accessible genomic data. 

Incentives for Sharing Data 

Several participants suggested providing incentives for researchers and 
institutions to share data. Levy discussed strategies to promote data shar
ing at research institutions. She noted that one barrier to sharing is the cost 
associated with contributing data to a shared resource, including the cost of 
converting the data into formats compatible with public repositories. These 
costs are not typically covered by the funding for precision oncology studies, 
but Levy suggested they could be incorporated in grant applications to provide 
financial support for data sharing. McShane said NIH could provide such 
incentives because of its role as the major funder of health research in the 
United States. She noted, however, that it can be difficult for NIH to enforce 
data-sharing requirements because of proprietary content and regulations that 
aim to protect human subjects of research. For example, Institutional Review 
Boards, which interpret those regulations at research institutions, may not 
allow genomic data to be shared without individual consent. 

Another strategy Levy discussed is to acknowledge researchers who con
tribute their data to public databases. She suggested that acknowledging 
researchers who contribute data would provide credit for their contribution 
to the field and could be used as evidence to support academic promotion. 

Enabling Patient Sharing of Data 

Several participants noted that patients would like to share their data for 
research purposes. Magnus described a study that found that “patients are 

18 See https://www.clinicalgenome.org/about (accessed January 8, 2019).
 
19 See https://www.ncbi.nlm.nih.gov/clinvar/intro (accessed January 8, 2019). 

20 See http://www.ukbiobank.ac.uk/about-biobank-uk (accessed January 8, 2019).
 

https://www.clinicalgenome.org/about
https://www.ncbi.nlm.nih.gov/clinvar/intro
http://www.ukbiobank.ac.uk/about-biobank-uk
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BOX 4
 
Project GENIE 


Project GENIE (Genomics Evidence Neoplasia Information
Exchange) is an international pan-cancer registry built through
data sharing and driven by openness, transparency, and inclusion. 
The goal of GENIE is to improve clinical decision making by linking 
patient genetic profiles to clinical outcomes. GENIE has 19 mem-
bers that span North America and Europe, with plans for further 
expansion. Funding for the database comes from the American
Association for Cancer Research (AACR), sponsored research,
philanthropy, and the federal government. All members voluntarily 
agree to share their data in GENIE’s public database in order to 
have access to the large datasets they need for research and would
be unable to acquire at their own institutions.
Formally introduced in November 2015, GENIE had its first 

release of public data about 1 year later. Three years later it
released genetic sequences from 60,000 tumors linked with partial 
clinical data, including basic patient demographics, vital status, and 
the type or subtype of tumor. AACR acts as the coordinating center 
and has staff devoted to running the program. GENIE also has 
strategic partners, including the technology platforms cBioPortal for
Cancer Genomicsa and Sage Bionetworks.b Data are de-identified 
and publicly shared 1 year after they are acquired from patients, 
but each institution has exclusive access to data it contributed for 
the first 6 months. 

Future goals for the project include acquiring treatment and 
outcomes data as well as other types of laboratory data (e.g., epi-
genetic information and patient germline sequencing data). GENIE 
is currently trying to devise and implement training for data cura-
tors at participating institutions so they can record treatment and 
outcome data more consistently. The project expects to include
100,000 cases within a few years, including 10,000 cases that will 
be manually annotated for linkage to clinical data.

Mia Levy, director of the Rush University Cancer Center,
noted that a limitation of the project is a lack of participant diversity. 
Only a small percentage of patients represented in the database
are African American or Asian. There are also numerous cases in 
which the patient’s ethnicity or race is unknown because European 
contributors are not permitted to release that information. GENIE 

continued 
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BOX 4 Continued 

also lacks age diversity in its datasets, with most cases coming from
adult patients over the age of 60.

As evidence of the potential utility of the project, Levy said that 
a 2017 study from AACR found that 16,000 out of 18,000 patients 
whose data were entered in GENIE could be matched to one of 
more than 600 clinical trials of targeted therapies currently enrolling 
patients. Another study found that for many types of cancer repre-
sented in the GENIE patient population, genetic findings suggested 
standard or promising investigational treatments (The AACR Project
GENIE Consortium, 2017) (see figure below). 

a See http://www.cbioportal.org/about (accessed January 8, 2019). 
b See http://sagebionetworks.org/who-we-are-s (accessed January 8, 2019). 

FIGURE Landscape of potential clinical actionability of cancer mutations in 
the Project GENIE database.
NOTE: CNS = central nervous system.
SOURCES: Levy presentation, October 29, 2018; Reprinted from AACR 
Project GENIE: Powering Precision Medicine Through an International
Consortium, 2017, Volume 7/Issue 8, 825, The AACR Project GENIE Con-
sortium, with permission from AACR. 

http://www.cbioportal.org/about
http://sagebionetworks.org/who-we-are-s
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more excited about data sharing than researchers are” (Mello et al., 2018). 
McGraw agreed, noting that the patient groups she has interacted with advo
cate for sharing their data to help other patients. However, it is often difficult 
for patients to allow their data to be shared because health care institutions do 
not have systems in place for data sharing. Levy suggested that new technolo
gies, such as Blue Button 2.0,21 could empower patients to share their data 
directly without relying on health care institutions to serve as a broker. 

Schilsky pointed out that although HIPAA regulations give patients the 
right to request their health data, health care providers do not necessarily have 
to provide those data in a usable format. He noted that patients who request 
their medical records are often provided with a PDF, which does not allow for 
easy data abstraction. McGraw responded that although there are companies 
trying to develop methods for abstracting data from PDFs, “all that work 
would not be necessary if the data were provided in a portable manner.” She 
noted that there are standards, certified by the Office of the National Coor
dinator for Health Information Technology,22 that describe how EHR data 
should be made available to patients. McGraw suggested that although these 
efforts are useful, additional work is needed to provide patients with their 
health care data in a portable and adaptable format. 

Butte described a function of the iPhone’s native health app that can track 
and update medical records from multiple health sources based on a geocode 
for the user’s location. This can enable patients to access and share diverse 
health data from multiple facilities without needing to individually access 
patient portals. Butte suggested that 500 health systems have already agreed 
to share their data with Apple so patients can access their records via the app. 
Butte also noted that developers are working on health apps that are able to 
translate technical health information for lay consumers. “We’re going to write 
these apps to help patients understand their health data because patients can 
get these data today,” he said. 

Although Butte agreed that “the more we can share, the more we can 
move forward together,” he stressed that “there’s only so much patients can do 
by themselves in disease-oriented groups. I think the responsibility is on the 
medical system to share, too.” 

Khozin added that FDA has launched a block chain effort to enable 
data sharing. The neutral platform they provide allows for the exchange 
of data without the need for involvement of a third party. In the United 
States, data submitted to FDA becomes public information as soon as the 
product for which it was collected has obtained approval to go on the market. 
Depending on how certain FDA statutes are interpreted, patient data under 

21 See https://bluebutton.cms.gov (accessed January 8, 2019).
 
22 See https://www.healthit.gov/topic/about-onc (accessed January 8, 2019).
 

https://bluebutton.cms.gov
https://www.healthit.gov/topic/about-onc
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review by a government process could also be public information, according 
to Weichold. 

Data Protection 

Several participants noted that legal protections for patient data deter
mine if, when, and how easily data can be shared (see Patient Privacy sub
section). McGraw suggested that sharing of clinical data for research purposes 
should be routine, but she also noted there should be standards to protect 
patient privacy. These standards should include data minimization techniques 
to reduce identifiability and responsible brokering of data access. McGraw 
suggested that sharing of patients’ EHR data should be subject to ethical and 
normative standards, and noted that GDPR does allow for processing of data 
to contribute to scientific research. However, there is confusion about the 
meaning of “research purposes” and what types of data processing are allowed 
without obtaining consent. In addition, McGraw noted that CCPA provides 
an exemption for health data shared in clinical trials, but does not discuss 
other types of research. McGraw suggested that future privacy regulations 
should strive for broad informed consent that enables patients to agree to 
reuse of data for research, similar to what is done for the All of Us Research 
Program. Newcomer said that in the United Kingdom, it is routine to share 
health data, with national consensus on the issue. 

Patrick-Lake noted that patients who want to share their data also want 
to know how their data are being used and whether the data are accurate. 
McGraw responded that the Fair Information Practice Principles specify that 
patients should be informed about how their data are used. In practice, how
ever, there is often little effort to engage directly with patients or explain data 
applications. McGraw noted that there are exceptions to this lack of patient 
engagement, including some projects of the National Patient-Centered Clini
cal Research Network, in which patients regularly provide input on the types 
of research projects of interest to them, and patients are informed about prog
ress of the research in which their data are used. “There are lots of ways to do 
this and they all center around not treating people as subjects, but treating 
them as participants. Many research initiatives around the country have started 
to go down that path,” McGraw said. 

Multidisciplinary Teamwork 

McLeod stressed that creating and implementing a computational preci
sion oncology system requires engaging multidisciplinary teams, including 
pathologists, oncologists, pharmacologists, statisticians, and health informa
tion technology specialists. Oliver and Chin added that mathematicians and 
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genetic counselors are also important participants. Abernethy noted that 
even the construction of a dataset used to generate computational algorithms 
requires many different types of expertise, including clinical, analytic, software, 
hardware, and privacy. However, Ferryman noted that in her interviews with 
computer scientists who build algorithms, many said involving clinicians in 
data curation and interpretation was too expensive. 

Several participants identified a need to bridge the gap between computer 
sciences and medicine. “We need to bring the machine learning community 
and the clinical community closer so they both talk the same language and so 
machine learning people can validate their tools on relevant data,” Parmigiani 
said. Hricak agreed, stating 

There is a complexity of cancer diagnosis and treatment that requires a multi
disciplinary approach on both the human side and the data side. Unless we 
work together, it will always be one gene-one-drug that didn’t work. We have 
integrated teams of oncologists, surgeons, radiologists, and pathologists, but 
we also have to have biomedical information specialists. They can no longer be 
in a different building far away, but instead have to be with us and understand 
the questions we are asking. 

Shah described his new research lab, Health 0.0, which aims to facilitate these 
interdisciplinary collaborations (see Box 5). 

Ferryman  also  suggested  that  teams  developing  computational  preci
sion oncology should include public health researchers or other social scien-



BOX 5
 
Health 0.0 at the 


Massachusetts Institute of Technology
 

Pratik Shah, principal research scientist and a principal inves-
tigator at the Massachusetts Institute of Technology (MIT) Media 
Lab, reported on a research program he leads, called Health 0.0. 
His group is working to create novel intersections and collabora-
tions among engineering, medical imaging, machine learning, and 
medicine to improve health and to diagnose and cure disease. Sup-
ported by the MIT Media Lab and other funding agencies, Health 0.0
is exploring the potential benefits and limits of machine learning, as 
well as ways to ensure data are not biased.

The key goals of Health 0.0 are: 

continued 
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BOX 5 Continued 

•	 New models and technologies for health research: digitally 
empowered researchers, physicians, regulators, patients, 
and individuals; 

•		 Addressing current and near-term artificial intelligence (AI), 
machine learning, medical imaging, and neural network
capabilities as they pertain to digital medicines and improv-
ing health;

•	 Safer, faster, and effective real-world evidence-driven clini-
cal trials and novel digital endpoints;

•	 Encrypted and secured machine learning, AI neural network
models and other data-sharing platforms to protect confi-
dential information; and 

•	 Research collaborations with leaders and experts from
within MIT, government, foundations, life sciences, universi-
ties, and patient advocacy groups. 

Health 0.0’s research is broadly divided into three areas: 

1. Medical imaging technologies using unorthodox AI for early 
disease diagnoses

2.	 Novel ethical, secure, and explainable AI based digital
medicines and treatments 

3. Point-of-care medical technologies for real-world data and 
evidence generation to improve public health 

SOURCES: Shah presentation, October 29, 2018; MIT, 2019. 

tists. Experts from these disciplines can contextualize the collected data and 
ensure that datasets do not embed biases that will prevent precision oncology 
advances from benefiting all members of society. 

WRAP-UP 

Cogle identified several key points from the workshop. He said computa
tional technologies that interpret patient data should be evaluated for clinical 
utility and should be subject to FDA oversight. He called for greater clarity 
on regulatory oversight for computational interpretations of patient data, but 
also noted the value of FDA’s risk-based approach to regulating SaMD. He 



  

         
 
 
 

   

 
 
 
 

 
 

           

 
 
 
 

      
 

  
          

 
 

 
 
 

   

 

59 PROCEEDINGS OF A WORKSHOP 

emphasized the need for well-designed prospective trials and appropriate train
ing and calibration of machine learning algorithms, and added that strategies 
and criteria are needed for evaluating these tools and deciding when a software 
product is ready for clinical practice. He also noted the need for monitoring 
the ongoing performance of algorithms and machine learning applications 
used in clinical practice. 

Cogle also stressed the importance of the face validity of how preci
sion oncology algorithms aid diagnosis or treatment selection, and called for 
improved training on omics data and statistics to help clinicians understand 
the computational tools they use. He also pointed to the importance of 
molecular tumor boards in helping clinicians integrate precision oncology in 
patient care, noting that institutions lacking local expertise in precision oncol
ogy could use telemedicine consultations. Cogle also suggested that strong 
institutional leadership is important for successful clinical implementation, 
and that computational technologies can be added to existing EHR systems. 

The difficulty in communicating omics findings to patients and their fam
ilies should be addressed as well, Cogle said. He also noted that privacy laws 
protecting patient health data are becoming more complex and fragmented, 
and there is a need to adapt the informed consent process for use of patient 
data in research, and to protect data collected from health apps that patients 
use on their mobile devices or computers. 

Cogle identified the need for better data standards and emphasized the 
importance of using high-quality data in the development and evaluation of 
computational methods, as well as the importance of transparency for preci
sion oncology algorithms. He also stressed the importance of reproducibility 
of computational precision oncology findings across different datasets and 
contexts, and noted concerns that data used to develop decision support algo
rithms may be not representative of diverse populations. In addition, Cogle 
said that current computational precision oncology technologies often fail to 
consider heterogeneity within patients’ tumors, and he emphasized the power 
in sharing data among institutions. 
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 Appendix A
 

Statement of Task
 

An ad hoc committee will plan and host a 1.5-day public workshop to 
examine the clinical use of high-dimensional omics data and computational 
methods in precision oncology research and clinical care. The workshop will 
feature invited presentations and panel discussions on topics that may include 

•	 Challenges and opportunities to use omics data to develop precision 
medicine approaches and technologies in cancer care.  

•	 Potential standards and best practices for computational software and 
methodological approaches for the use of big data to inform clinical 
care of patients with cancer, especially in regard to multiparameter/ 
multitreatment testing and interpretation.  

•	 Potential opportunities to improve the translation of omics technologies 
into oncology practice, such as harmonization of standards for omics
based discovery, development, and evaluation; data sharing and 
reproducibility; oversight and regulation; education, training, and 
workforce needs; and use of dissemination and implementation science 
strategies. 

The committee will develop the agenda for the workshop sessions, select 
and invite speakers and discussants, and moderate the discussions. A proceed
ings of the presentations and discussions at the workshop will be prepared by 
a designated rapporteur in accordance with institutional guidelines. 

65
 





  

   

     
   

       
        

 
         

   

        

   
 

 

         

Appendix B
 

Workshop Agenda
 

OCTOBER 29, 2018 

7:30 am	 Registration 

8:00 am	 Welcome from the National Cancer Policy Forum and the 
Board on Mathematical Sciences and Analytics 
Christopher Cogle, University of Florida 
Chair, Workshop Planning Committee 

David Chu, Institute for Defense Analyses 
Member, Board on Mathematical Sciences and Analytics 

8:15 am	 Session 1: Workshop Overview 
Moderator: Hedvig Hricak, Memorial Sloan Kettering Cancer 
Center 

Precision Oncology: The Optimism and Pessimism from 
Keyboard to Bedside 
• Christopher Cogle, University of Florida 

Brief Review of Improving Cancer Diagnosis and Care: 
Patient Access to Oncologic Imaging and Pathology 
Expertise and Technologies (February 2018, National 
Cancer Policy Forum Workshop) 
• Hedvig Hricak, Memorial Sloan Kettering Cancer Center 
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Keynote: A Roadmap for Translating Precision Oncology 
into Clinical Practice 
• Atul Butte, University of California, San Francisco 

Panel Discussion 

10:10 am	 Break 

10:15 am	 Session 2: Defining Unmet Needs and Challenges of 
Precision Oncology in Clinical Practice 
Moderator: Christopher Cogle, University of Florida 

High-Dimensional Data in Precision Oncology: Signal and 
Hype 
• Constantine Gatsonis, Brown University 

Biologic and Metaphysical Limits to Pursuing Precision 
Oncology 
• Keith Flaherty, Massachusetts General Hospital 

The Risks of Bias and Inequities in Precision Oncology Care 
• Kadija Ferryman, Data & Society Research Institute 

Communication Challenges in Precision Oncology 
• Galen Joseph, University of California, San Francisco 

Panel Discussion 

12:15 pm	 Lunch 

1:00 pm	 Session 3: Data Considerations for Precision Oncology Care 
Moderator: Amy Abernethy, Flatiron Health 

Envisioning Critical Features of Datasets for Precision 
Oncology Care 
• Amy Abernethy, Flatiron Health 

Opportunities and Lessons Learned from AACR’s Project 
GENIE 
• Mia Levy, Vanderbilt University 



 

  
         

   
      

   
    
       

 

   
 

      

   

        

   

        

   

        

   

        

   

          
 

   

  

 

69 APPENDIX B 

Data Standardization and Harmonization 
•	 Sean Khozin, Food and Drug Administration 

Data Governance, Privacy, and Security 
•	 Deven McGraw, Ciitizen 

Panel Discussion 
Includes speakers and 
•	 David Magnus, Stanford University 

3:00 pm	 Break 

3:15 pm	 Session 4: Analysis and Interpretation of Computational 
Methods for Precision Oncology Care 
Moderator: Constantine Gatsonis, Brown University 

Conceptual Strategies for Reproducibility of Precision 
Oncology Data and Methods 
•	 Steven Goodman, Stanford University School of Medicine 

Validation and Replicability of Prediction Algorithms in 
Oncology 
•	 Giovanni Parmigiani, Dana-Farber Cancer Institute 

Assessing Readiness of an Omics Signature for Use in a 
Clinical Trial 
•	 Lisa McShane, National Cancer Institute 

Regulation and Assessment of Quantitative Imaging Tools 
Used in Precision Oncology 
•	 Nicholas Petrick, Food and Drug Administration 

Digital Clinical Trials for Oncology Patients with Novel 
Machine Learning and Artificial Intelligence Architectures 
•	 Pratik Shah, Massachusetts Institute of Technology Media 

Lab 

Panel Discussion 

5:30 pm	 Adjourn Day 1 

5:35 pm	 Reception 
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October 30, 2018 

7:30 am	 Registration and Breakfast 

8:00 am	 Session 5: Clinical Application of Precision Oncology: 
Improving the Translation of Omics Technologies in 
Cancer Care 
Moderator: Mia Levy, Vanderbilt University 

Demonstrating Clinical Utility in Cancer Patient 
Management 
•	 Lincoln Nadauld, Intermountain Healthcare 

Health Care Delivery Models and Infrastructure for 
Precision Oncology Care 
•	 Howard McLeod, Moffitt Cancer Center 

Scaling Precision Oncology Care: Lessons Learned from 
Implementing Artificial Intelligence Across Health Care 
and Community Settings 
•	 George “Holt” Oliver, Parkland Center for Clinical 

Innovation 

Health Insurance Coverage Issues 
•	 Lee N. Newcomer, Lee N. Newcomer Consulting 

Panel Discussion 
Include speakers and 
•	 Michael Kelley, Duke University and Veterans Health 

Administration 
•	 Lukas Amler, Genentech 

10:00 am	 Break 

10:15 am	 Session 6: Panel Discussion: Stakeholder Perspectives of the 
Path Forward 
Moderator: David Magnus, Stanford University 

•	 Richard Schilsky, American Society of Clinical Oncology 
•	 Frank F. Weichold, Food and Drug Administration 
•	 Bray Patrick-Lake, Duke University and All of Us Research 

Program 
•	 Deven McGraw, Ciitizen 
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• Lisa McShane, National Cancer Institute 
• Lee Newcomer, Lee N. Newcomer Consulting 
• Joseph Chin, Centers for Medicare & Medicaid Services 
• Lukas Amler, Genentech 

11:30 am	 Workshop Wrap Up 
Christopher Cogle, University of Florida 
Chair, Workshop Planning Committee 

11:45 am	 Adjourn 
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